首页> 外文期刊>The Journal of Chemical Physics >How nanochannel confinement affects the DNA melting transition within the Poland-Scheraga model
【24h】

How nanochannel confinement affects the DNA melting transition within the Poland-Scheraga model

机译:纳米通道限制如何影响Poland-Scheraga模型中的DNA熔解转变

获取原文
获取原文并翻译 | 示例
           

摘要

When double-stranded DNA molecules are heated, or exposed to denaturing agents, the two strands are separated. The statistical physics of this process has a long history and is commonly described in terms of the Poland-Scheraga (PS) model. Crucial to this model is the configurational entropy for a melted region (compared to the entropy of an intact region of the same size), quantified by the loop factor. In this study, we investigate how confinement affects the DNA melting transition, by using the loop factor for an ideal Gaussian chain. By subsequent numerical solutions of the PS model, we demonstrate that the melting temperature depends on the persistence lengths of single-stranded and double-stranded DNA. For realistic values of the persistence lengths, the melting temperature is predicted to decrease with decreasing channel diameter. We also demonstrate that confinement broadens the melting transition. These general findings hold for the three scenarios investigated: 1. homo-DNA, i.e., identical basepairs along the DNA molecule, 2. random sequence DNA, and 3. "real" DNA, here T4 phageDNA. We show that cases 2 and 3 in general give rise to broader transitions than case 1. Case 3 exhibits a similar phase transition as case 2 provided the random sequence DNA has the same ratio of AT to GC basepairs (A - adenine, T - thymine, G - guanine, C - cytosine). A simple analytical estimate for the shift in melting temperature is provided as a function of nanochannel diameter. For homo-DNA, we also present an analytical prediction of the melting probability as a function of temperature. (C) 2015 AIP Publishing LLC.
机译:当双链DNA分子被加热或暴露于变性剂时,两条链会分离。此过程的统计物理学历史悠久,通常以Poland-Scheraga(PS)模型来描述。该模型的关键是融化区域的构型熵(与相同大小的完整区域的熵相比),由循环因子量化。在这项研究中,我们通过使用理想高斯链的环因子来研究限制如何影响DNA的熔解转变。通过PS模型的后续数值解,我们证明了解链温度取决于单链和双链DNA的持久长度。对于持久长度的实际值,预计熔化温度会随着通道直径的减小而降低。我们还证明了禁闭作用扩大了熔融转变。这些一般发现适用于所研究的三种情况:1.同质DNA,即沿DNA分子的相同碱基对; 2.随机序列DNA;和3.“真实” DNA,此处为T4噬菌体DNA。我们表明,情况2和3通常会比情况1产生更宽的跃迁。如果随机序列DNA具有相同的AT与GC碱基对比率(A-腺嘌呤,T-胸腺嘧啶),则情况3会显示出与情况2类似的相变。 ,G-鸟嘌呤,C-胞嘧啶)。根据纳米通道直径,提供了对熔融温度变化的简单分析估计。对于同源DNA,我们还提出了熔解概率随温度变化的分析预测。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号