首页> 外文期刊>The Journal of Chemical Physics >Theory of bi-molecular association dynamics in 2D for accurate model and experimental parameterization of binding rates
【24h】

Theory of bi-molecular association dynamics in 2D for accurate model and experimental parameterization of binding rates

机译:二维二维双分子缔合动力学理论用于结合速率的精确模型和实验参数化

获取原文
获取原文并翻译 | 示例
           

摘要

The dynamics of association between diffusing and reacting molecular species are routinely quantified using simple rate-equation kinetics that assume both well-mixed concentrations of species and a single rate constant for parameterizing the binding rate. In two-dimensions (2D), however, even when systems are well-mixed, the assumption of a single characteristic rate constant for describing association is not generally accurate, due to the properties of diffusional searching in dimensions d <= 2. Establishing rigorous bounds for discriminating between 2D reactive systems that will be accurately described by rate equations with a single rate constant, and those that will not, is critical for both modeling and experimentally parameterizing binding reactions restricted to surfaces such as cellular membranes. We show here that in regimes of intrinsic reaction rate (k(a)) and diffusion (D) parameters k(a)/D > 0.05, a single rate constant cannot be fit to the dynamics of concentrations of associating species independently of the initial conditions. Instead, a more sophisticated multi-parametric description than rate-equations is necessary to robustly characterize bimolecular reactions from experiment. Our quantitative bounds derive from our new analysis of 2D rate-behavior predicted from Smoluchowski theory. Using a recently developed single particle reaction-diffusion algorithm we extend here to 2D, we are able to test and validate the predictions of Smoluchowski theory and several other theories of reversible reaction dynamics in 2D for the first time. Finally, our results also mean that simulations of reactive systems in 2D using rate equations must be undertaken with caution when reactions have k(a)/D > 0.05, regardless of the simulation volume. We introduce here a simple formula for an adaptive concentration dependent rate constant for these chemical kinetics simulations which improves on existing formulas to better capture non-equilibrium reaction dynamics from dilute to dense systems. (C) 2015 AIP Publishing LLC.
机译:通常使用简单的速率方程动力学来量化扩散和反应分子物种之间的缔合动力学,该速率方程动力学假定物种的良好混合浓度和用于参数化结合速率的单个速率常数。但是,在二维(2D)中,即使在系统充分混合的情况下,由于维度d <= 2的扩散搜索性质,用于描述关联的单个特征速率常数的假设通常也不准确。区分2D反应系统的界限(将由具有单个比率常数的比率方程式准确描述)和那些对于限制限于表面(如细胞膜)的结合反应的建模和实验参数化都是至关重要的。我们在这里表明,在本征反应速率(k(a))和扩散(D)参数k(a)/ D> 0.05的范围内,单个速率常数不能适合于与初始相关的缔合物质浓度的动力学。条件。取而代之的是,比速率方程更复杂的多参数描述对于从实验中可靠地表征双分子反应是必需的。我们的定量界限源自对Smoluchowski理论预测的二维速率行为的新分析。使用最近开发的单粒子反应扩散算法,我们将其扩展到2D,我们能够首次测试和验证Smoluchowski理论以及其他一些可逆反应动力学理论的预测。最后,我们的结果还意味着,当反应的k(a)/ D> 0.05时,无论模拟量如何,都必须谨慎地使用速率方程对2D反应系统进行模拟。我们在这里为这些化学动力学模拟引入一个适用于浓度依赖性速率常数的简单公式,该公式对现有公式进行了改进,以更好地捕获从稀体系到稠体系的非平衡反应动力学。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号