首页> 外文期刊>The Journal of Chemical Physics >Ab initio O(N) elongation-counterpoise method for BSSE-corrected interaction energy analyses in biosystems
【24h】

Ab initio O(N) elongation-counterpoise method for BSSE-corrected interaction energy analyses in biosystems

机译:从头算O(N)伸长平衡法用于生物系统中BSSE校正的相互作用能分析

获取原文
获取原文并翻译 | 示例
           

摘要

An Elongation-counterpoise (ELG-CP) method was developed for performing accurate and efficient interaction energy analysis and correcting the basis set superposition error (BSSE) in biosystems. The method was achieved by combining our developed ab initio O(N) elongation method with the conventional counterpoise method proposed for solving the BSSE problem. As a test, the ELG-CP method was applied to the analysis of the DNAs' inter-strands interaction energies with respect to the alkylation-induced base pair mismatch phenomenon that causes a transition from G center dot center dot center dot C to A center dot center dot center dot T. It was found that the ELG-CP method showed high efficiency (nearly linear-scaling) and high accuracy with a negligibly small energy error in the total energy calculations (in the order of 10-7-10-8 hartree/atom) as compared with the conventional method during the counterpoise treatment. Furthermore, the magnitude of the BSSE was found to be ca. -290 kcal/mol for the calculation of a DNA model with 21 base pairs. This emphasizes the importance of BSSE correction when a limited size basis set is used to study the DNA models and compare small energy differences between them. In this work, we quantitatively estimated the inter-strands interaction energy for each possible step in the transition process from G center dot center dot C to A center dot center dot center dot T by the ELG-CP method. It was found that the base pair replacement in the process only affects the interaction energy for a limited area around the mismatch position with a few adjacent base pairs. From the interaction energy point of view, our results showed that a base pair sliding mechanism possibly occurs after the alkylation of guanine to gain the maximum possible number of hydrogen bonds between the bases. In addition, the steps leading to the A center dot center dot center dot T replacement accompanied with replications were found to be unfavorable processes corresponding to ca. 10 kcal/mol loss in stabilization energy. The present study indicated that the ELG-CP method is promising for performing effective interaction energy analyses in biosystems. (C) 2015 AIP Publishing LLC.
机译:开发了一种延伸平衡法(ELG-CP),用于进行准确而有效的相互作用能分析,并校正生物系统中的基集叠加误差(BSSE)。该方法是通过将我们开发的从头算起的O(N)延伸方法与为解决BSSE问题而提出的常规平衡法相结合而实现的。作为测试,ELG-CP方法被用于分析DNA链间相互作用能,以分析烷基化引起的碱基对错配现象,该现象导致从G中心点中心点中心点C过渡到A中心发现ELG-CP方法在总能量计算中显示出高效率(接近线性比例)和高精度,并且能量误差可忽略不计(约10-7-10-)在平衡网处理过程中,与传统方法相比8 hartree / atom)。此外,发现BSSE的大小约为。 -290 kcal / mol用于计算具有21个碱基对的DNA模型。当使用有限大小的基础集研究DNA模型并比较它们之间的微小能量差异时,这强调了BSSE校正的重要性。在这项工作中,我们通过ELG-CP方法定量估计了从G中心点中心点C到A中心点中心点中心点T过渡过程中每个可能步骤的链间相互作用能。发现在该过程中碱基对的替换仅影响围绕错配位置的有限区域与几个相邻碱基对的相互作用能。从相互作用能的角度来看,我们的结果表明鸟嘌呤烷基化后可能发生碱基对滑动机制,从而获得碱基之间最大数量的氢键。另外,发现导致A中心点中心点中心点T替换并复制的步骤是不利的过程,其对应于约1。稳定能量损失10 kcal / mol。本研究表明,ELG-CP方法有望在生物系统中进行有效的相互作用能分析。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号