首页> 外文期刊>The Journal of Chemical Physics >The dissociative chemisorption of methane on Ni(111): The effects of molecular vibration and lattice motion
【24h】

The dissociative chemisorption of methane on Ni(111): The effects of molecular vibration and lattice motion

机译:甲烷在Ni(111)上的解离化学吸附:分子振动和晶格运动的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We examine the dissociative chemisorption of methane on a Ni(111) surface, using a fully quantum approach based on the Reaction Path Hamiltonian that includes all 15 molecular degrees of freedom and the effects of lattice motion. The potential energy surface and all parameters in our model are computed from first principles. Vibrational excitation of the molecule is shown to significantly enhance the reaction probability, and the efficacy for this is explained in terms of the vibrationally non-adiabatic couplings, vibrational mode softening, and mode symmetry. Agreement with experimental data for molecules initially in the ground and 1ν_3 state is good, and including lattice anharmonicity further improves our results. The variation of the dissociation probability with substrate temperature is well reproduced by the model, and is shown to result primarily from changes in the dissociation barrier height with lattice motion. The enhancement of dissociative sticking with substrate temperature is particularly strong for processes that would otherwise have insufficient energy to surmount the barrier. Our model suggests that vibrationally excited molecules are likely to dominate the laser off dissociative sticking at high nozzle temperatures.
机译:我们使用基于全部15个分子自由度和晶格运动影响的反应路径哈密顿量的全量子方法,研究了Ni(111)表面上甲烷的解离化学吸附。势能面和模型中的所有参数都是根据第一原理计算的。分子的振动激发显示出显着提高了反应概率,并通过振动非绝热耦合,振动模式软化和模式对称性来解释其有效性。与最初处于基态和1ν_3状态的分子的实验数据相吻合很好,并且包括晶格非谐性进一步改善了我们的结果。该模型很好地再现了解离概率随衬底温度的变化,并且显示出其主要是由于解离势垒高度随晶格运动而变化的结果。对于本来没有足够能量来克服阻挡层的过程,离解粘附性随衬底温度的增强特别强。我们的模型表明,在高喷嘴温度下,振动激发的分子很可能会主导激光,使其脱离解离性粘附。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号