首页> 外文期刊>The Journal of Chemical Physics >Surface-induced liquid-gas transition in salt-free solutions of model charged colloids
【24h】

Surface-induced liquid-gas transition in salt-free solutions of model charged colloids

机译:模型带电胶体的无盐溶液中表面诱导的液-气过渡

获取原文
获取原文并翻译 | 示例
           

摘要

We report a novel phenomenon of a surface-induced phase transition in salt-free solutions of charged colloids. We develop a theory of this effect and confirm it by Molecular Dynamics simulations. To describe the colloidal solution we apply a primitive model of electrolyte with a strong asymmetry of charge and size of the constituent particles - macroions and counterions. To quantify interactions of the colloidal particles with the neutral substrate we use a short-range potential which models dispersion van der Waals forces. These forces cause the attraction of colloids to the surface. We show that for high temperatures and weak attraction, only gradual increase of the macroion concentration in the near-surface layer is observed with increase of interaction strength. If however temperature drops below some threshold value, a new dense (liquid) phase is formed in the near-surface layer. It can be interpreted as a surface-induced first-order phase transition with a critical point. Using an appropriately adopted Maxwell construction, we find the binodal. Interestingly, the observed near-surface phase transition can occur at the absence of the bulk phase transition and may be seemingly classified as prewetting transition. The reported effect could be important for various technological applications where formation of colloidal particle layers with the desired properties is needed.
机译:我们报告了带电荷的胶体的无盐溶液中表面诱导的相变的新现象。我们开发了这种效应的理论,并通过分子动力学模拟对其进行了确认。为了描述胶体溶液,我们应用了电解质的原始模型,该电解质具有强烈的不对称电荷和组成粒子(大分子和反离子)的大小。为了量化胶体颗粒与中性底物的相互作用,我们使用了一种短程电势,该电势模拟了分散范德华力。这些力导致胶体吸引到表面。我们表明,对于高温和弱吸引力,只有随着相互作用强度的增加,近表面层中的宏离子浓度才逐渐增加。但是,如果温度降至某个阈值以下,则会在近表面层中形成新的致密(液相)相。可以将其解释为具有临界点的表面诱导的一阶相变。使用适当采用的麦克斯韦构造,我们找到了双脚架。有趣的是,观察到的近表面相变可能发生在不存在本体相变的情况下,并且似乎可以归类为预润湿相变。对于需要形成具有所需性能的胶体颗粒层的各种技术应用,报道的效果可能很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号