首页> 外文期刊>The Journal of Chemical Physics >Modeling electron density distributions from X-ray diffraction to derive optical properties: Constrained wavefunction versus multipole refinement
【24h】

Modeling electron density distributions from X-ray diffraction to derive optical properties: Constrained wavefunction versus multipole refinement

机译:从X射线衍射建模电子密度分布以得出光学特性:受约束的波函数与多极精细化

获取原文
获取原文并翻译 | 示例
           

摘要

The rational design of next-generation optical materials requires an understanding of the connection between molecular structure and the solid-state optical properties of a material. A fundamental challenge is to utilize the accurate structural information provided by X-ray diffraction to explain the properties of a crystal. For years, the multipole refinement has been the workhorse technique for transforming high-resolution X-ray diffraction datasets into the detailed electron density distribution of crystalline material. However, the electron density alone is not sufficient for a reliable calculation of the nonlinear optical properties of a material. Recently, the X-ray constrained wavefunction refinement has emerged as a viable alternative to the multipole refinement, offering several potential advantages, including the calculation of a wide range of physical properties and seeding the refinement process with a physically reasonable starting point. In this study, we apply both the multipole refinement and the X-ray constrained wavefunction technique to four molecules with promising nonlinear optical properties and diverse structural motifs. In general, both techniques obtain comparable figures of merit and generate largely similar electron densities, demonstrating the wide applicability of the X-ray constrained wavefunction method. However, there are some systematic differences between the electron densities generated by each technique. Importantly, we find that the electron density generated using the X-ray constrained wavefunction method is dependent on the exact location of the nuclei. The X-ray constrained wavefunction refinement makes smaller changes to the wavefunction when coordinates from the Hartree-Fock-based Hirshfeld atom refinement are employed rather than coordinates from the multipole refinement, suggesting that coordinates from the Hirshfeld atom refinement allow the X-ray constrained wavefunction method to produce more accurate wavefunctions. We then use the experimentally derived wavefunctions to calculate the molecular dipole moment, polarizability, hyperpolarizability, and refractive index and show that these are in good agreement with the values calculated using ab initio methods. Thus, this study shows that experimental wavefunctions can be reliably generated from X-ray diffraction datasets, and that optical properties can be reliably calculated from these wavefunctions. Such a concerted interplay of experiment and computation via the X-ray constrained wavefunction refinement stands to enable the molecular engineering of tailor-made next-generation optical materials.
机译:下一代光学材料的合理设计需要了解分子结构与材料的固态光学性质之间的联系。一个基本的挑战是利用X射线衍射提供的准确的结构信息来解释晶体的特性。多年来,多极精细化一直是将高分辨率X射线衍射数据集转换为晶体材料的详细电子密度分布的主力技术。然而,仅电子密度不足以可靠地计算材料的非线性光学性质。近来,X射线约束波函数细化已成为多极细化的可行替代方案,具有许多潜在的优势,包括计算广泛的物理性质,并在物理上合理的起点植入细化过程。在这项研究中,我们将多极精细化和X射线约束波函数技术应用于具有良好的非线性光学性质和多样的结构图案的四个分子。通常,这两种技术都具有可比较的品质因数,并且产生的电子密度基本相似,这证明了X射线约束波函数法的广泛适用性。但是,每种技术产生的电子密度之间存在一些系统性差异。重要的是,我们发现使用X射线约束波函数方法生成的电子密度取决于原子核的确切位置。当使用基于Hartree-Fock的Hirshfeld原子精炼的坐标而不是多极子精炼的坐标时,X射线约束波函数的细化对波函数的变化较小,这表明来自Hirshfeld原子精炼的坐标允许X射线约束的波函数产生更精确的波函数的方法。然后,我们使用实验得出的波函数来计算分子偶极矩,极化率,超极化率和折射率,并表明它们与从头算方法计算出的值非常吻合。因此,这项研究表明,可以从X射线衍射数据集可靠地生成实验波函数,并且可以从这些波函数可靠地计算光学特性。通过X射线约束的波函数优化,实验和计算之间的这种协调的相互作用使特制下一代光学材料的分子工程成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号