首页> 外文期刊>The Journal of Chemical Physics >Protein electron transfer: Dynamics and statistics
【24h】

Protein electron transfer: Dynamics and statistics

机译:蛋白质电子转移:动力学和统计

获取原文
获取原文并翻译 | 示例
           

摘要

Electron transfer between redox proteins participating in energy chains of biology is required to proceed with high energetic efficiency, minimizing losses of redox energy to heat. Within the standard models of electron transfer, this requirement, combined with the need for unidirectional (preferably activationless) transitions, is translated into the need to minimize the reorganization energy of electron transfer. This design program is, however, unrealistic for proteins whose active sites are typically positioned close to the polar and flexible protein-water interface to allow inter-protein electron tunneling. The high flexibility of the interfacial region makes both the hydration water and the surface protein layer act as highly polar solvents. The reorganization energy, as measured by fluctuations, is not minimized, but rather maximized in this region. Natural systems in fact utilize the broad breadth of interfacial electrostatic fluctuations, but in the ways not anticipated by the standard models based on equilibrium thermodynamics. The combination of the broad spectrum of static fluctuations with their dispersive dynamics offers the mechanism of dynamical freezing (ergodicity breaking) of subsets of nuclear modes on the time of reaction/residence of the electron at a redox cofactor. The separation of time-scales of nuclear modes coupled to electron transfer allows dynamical freezing. In particular, the separation between the relaxation time of electro-elastic fluctuations of the interface and the time of conformational transitions of the protein caused by changing redox state results in dynamical freezing of the latter for sufficiently fast electron transfer. The observable consequence of this dynamical freezing is significantly different reorganization energies describing the curvature at the bottom of electron-transfer free energy surfaces (large) and the distance between their minima (Stokes shift, small). The ratio of the two reorganization energies establishes the parameter by which the energetic efficiency of protein electron transfer is increased relative to the standard expectations, thus minimizing losses of energy to heat. Energetically efficient electron transfer occurs in a chain of conformationally quenched cofactors and is characterized by flattened free energy surfaces, reminiscent of the flat and rugged landscape at the stability basin of a folded protein.
机译:参与生物能量链的氧化还原蛋白之间的电子转移需要以高能量效率进行,以最大程度地减少氧化还原能量对热量的损失。在电子转移的标准模型中,此要求与对单向(最好是无激活)跃迁的需求相结合,转化为最大限度地减少电子转移的重组能量的需求。但是,对于活性位点通常靠近极性和柔性蛋白质-水界面以允许蛋白质间电子隧穿的蛋白质,此设计程序是不现实的。界面区域的高柔韧性使水合水和表面蛋白质层均充当高极性溶剂。通过波动来衡量的重组能量并未被最小化,而是在该区域中被最大化。实际上,自然系统利用了界面静电波动的广泛范围,但是采用的是基于平衡热力学的标准模型所无法预料的方式。静态波动的广谱及其色散动力学的结合提供了在氧化还原辅助因子上电子反应/驻留时核模式子集的动态冻结(遍历性破坏)机制。与电子传递耦合的核模态时标的分离允许动态冻结。特别地,界面的电弹性波动的弛豫时间与由改变的氧化还原状态引起的蛋白质的构象转变时间之间的间隔导致了后者的动态冻结,以实现足够快的电子转移。这种动态冻结的可观察到的结果是,显着不同的重组能量描述了电子转移自由能表面底部的曲率(大)及其最小值之间的距离(斯托克斯位移,小)。两种重组能量的比率确定了一个参数,通过该参数相对于标准期望值,可以提高蛋白质电子转移的能量效率,从而将能量的热量损失降至最低。能量有效的电子转移发生在构象淬灭的辅因子链中,其特征是扁平的自由能表面,使人联想到折叠蛋白稳定槽处平坦而崎landscape的地形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号