...
首页> 外文期刊>The Journal of Chemical Physics >Spin-adapted density matrix renormalization group algorithms for quantum chemistry
【24h】

Spin-adapted density matrix renormalization group algorithms for quantum chemistry

机译:用于量子化学的自旋适应密度矩阵重归一化群算法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We extend the spin-adapted density matrix renormalization group (DMRG) algorithm of McCulloch and Gulacsi [Europhys. Lett. 57, 852 (2002)]10.1209/epl/ i2002-00393-0 to quantum chemical Hamiltonians. This involves using a quasi-density matrix, to ensure that the renormalized DMRG states are eigenfunctions of S2, and the Wigner-Eckart theorem, to reduce overall storage and computational costs. We argue that the spin-adapted DMRG algorithm is most advantageous for low spin states. Consequently, we also implement a singlet-embedding strategy due to Tatsuaki [Phys. Rev. E 61, 3199 (2000)]10.1103/PhysRevE.61.3199 where we target high spin states as a component of a larger fictitious singlet system. Finally, we present an efficient algorithm to calculate one- and two-body reduced density matrices from the spin-adapted wavefunctions. We evaluate our developments with benchmark calculations on transition metal system active space models. These include the Fe _2S _2, [Fe _2S _2(SCH _3) _4] ~(2-), and Cr _2 systems. In the case of Fe _2S _2, the spin-ladder spacing is on the microHartree scale, and here we show that we can target such very closely spaced states. In [Fe _2S _2(SCH _3) _4] ~(2-), we calculate particle and spin correlation functions, to examine the role of sulfur bridging orbitals in the electronic structure. In Cr _2 we demonstrate that spin-adaptation with the Wigner-Eckart theorem and using singlet embedding can yield up to an order of magnitude increase in computational efficiency. Overall, these calculations demonstrate the potential of using spin-adaptation to extend the range of DMRG calculations in complex transition metal problems.
机译:我们扩展了McCulloch和Gulacsi [Europhys.com的自旋适应密度矩阵重归一化组(DMRG)算法。来吧57,852(2002)] 10.1209 / epl / i2002-00393-0。这涉及使用准密度矩阵,以确保重新归一化的DMRG状态是S2的本征函数和Wigner-Eckart定理,以减少总体存储和计算成本。我们认为,自旋自适应DMRG算法对于低自旋状态最有利。因此,由于Tatsuaki [Phys。 E 61,3199(2000)] 10.1103 / PhysRevE.61.3199,其中我们将高自旋态作为更大的虚拟单重态系统的组成部分。最后,我们提出了一种有效的算法,可以根据自旋适应波函数来计算一体和两体的密度降低矩阵。我们使用过渡金属系统活动空间模型的基准计算评估我们的发展。这些包括Fe _2S _2,[Fe _2S _2(SCH _3)_4]〜(2-)和Cr _2系统。在Fe _2S _2的情况下,自旋梯形间距在microHartree尺度上,在这里我们证明了我们可以针对如此紧密间隔的状态。在[Fe _2S _2(SCH _3)_4]〜(2-)中,我们计算粒子和自旋相关函数,以检查硫桥联轨道在电子结构中的作用。在Cr _2中,我们证明了使用Wigner-Eckart定理进行自旋自适应并使用单线嵌入可以使计算效率提高多达一个数量级。总体而言,这些计算证明了在复杂的过渡金属问题中使用自旋适应来扩展DMRG计算范围的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号