...
首页> 外文期刊>The Journal of Chemical Physics >A DFT+U study of acetylene selective hydrogenation on oxygen defective anatase (101) and rutile (110) TiO_2 supported Pd_4 cluster
【24h】

A DFT+U study of acetylene selective hydrogenation on oxygen defective anatase (101) and rutile (110) TiO_2 supported Pd_4 cluster

机译:DFT + U研究乙炔选择性加氢对缺氧的锐钛矿(101)和金红石(110)TiO_2负载的Pd_4团簇的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The reaction mechanisms for selective acetylene hydrogenation on three different supports, Pd_4 cluster, oxygen defective anatase (101), and rutile (110) titania supported Pd_4, cluster are studied using the density functional theory calculations with a Hubbard U correction (DFTU). The present calculations show that the defect anatase support binds Pd_4 cluster more strongly than that of rutile titania due to the existence of Ti~3 in anatase titania. Consequently, the binding energies of adsorbed species such as acetylene and ethylene on Pd_4 cluster become weaker on anatase supported catalysts compared to the rutile supported Pd_4 cluster. Anatase catalyst has higher selectivity of acetylene hydrogenation than rutile catalyst. On the one hand, the activation energies of ethylene formation are similar on the two catalysts, while they vary a lot on ethyl formation. The rutile supported Pd catalyst with lower activation energy is preferable for further hydrogenation. On the other hand, the relatively weak adsorption energy of ethylene is gained on anatase surface, which means it is easier for ethylene desorption, hence getting higher selectivity. For further understanding, the energy decomposition method and micro-kinetic analysis are also introduced.
机译:使用具有Hubbard U校正(DFTU)的密度泛函理论计算研究了在三种不同的载体Pd_4簇,氧缺陷型锐钛矿(101)和金红石(110)氧化钛负载的Pd_4簇上进行选择性乙炔加氢的反应机理。目前的计算表明,由于锐钛矿型二氧化钛中存在Ti〜3,因此缺陷型锐钛矿型支撑体比金红石型二氧化钛更牢固地结合Pd_4簇。因此,与金红石型负载的Pd_4簇相比,在锐钛矿型负载的催化剂上吸附的物质如乙炔和乙烯的结合能变弱。锐钛矿催化剂比金红石催化剂具有更高的乙炔加氢选择性。一方面,在两种催化剂上乙烯形成的活化能是相似的,而它们在乙基形成上却有很大的不同。具有较低活化能的金红石负载的Pd催化剂优选用于进一步氢化。另一方面,在锐钛矿表面上获得相对弱的乙烯吸附能,这意味着乙烯更易于解吸,因此具有更高的选择性。为了进一步理解,还介绍了能量分解方法和微动力学分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号