首页> 外文期刊>The Journal of Chemical Physics >A novel computer simulation method for simulating the multiscale transduction dynamics of signal proteins
【24h】

A novel computer simulation method for simulating the multiscale transduction dynamics of signal proteins

机译:一种模拟信号蛋白多尺​​度转导动力学的新型计算机仿真方法

获取原文
获取原文并翻译 | 示例
           

摘要

Signal proteins are able to adapt their response to a change in the environment, governing in this way a broad variety of important cellular processes in living systems. While conventional molecular-dynamics (MD) techniques can be used to explore the early signaling pathway of these protein systems at atomistic resolution, the high computational costs limit their usefulness for the elucidation of the multiscale transduction dynamics of most signaling processes, occurring on experimental timescales. To cope with the problem, we present in this paper a novel multiscale-modeling method, based on a combination of the kinetic Monte-Carlo- and MD-technique, and demonstrate its suitability for investigating the signaling behavior of the photoswitch light-oxygen-voltage-2-J domain from Avena Sativa (AsLOV2-J) and an AsLOV2-J-regulated photoactivable Rac1-GTPase (PA-Rac1), recently employed to control the motility of cancer cells through light stimulus. More specifically, we show that their signaling pathways begin with a residual re-arrangement and subsequent H-bond formation of amino acids near to the flavin-mononucleotide chromophore, causing a coupling between -strands and subsequent detachment of a peripheral -helix from the AsLOV2-domain. In the case of the PA-Rac1 system we find that this latter process induces the release of the AsLOV2-inhibitor from the switchII-activation site of the GTPase, enabling signal activation through effector-protein binding. These applications demonstrate that our approach reliably reproduces the signaling pathways of complex signal proteins, ranging from nanoseconds up to seconds at affordable computational costs.
机译:信号蛋白能够适应环境变化,从而控制生命系统中各种重要的细胞过程。尽管可以使用常规分子动力学(MD)技术以原子分辨率探索这些蛋白质系统的早期信号传导途径,但高昂的计算成本限制了它们在阐明大多数信号传导过程中发生在实验时间尺度上的多尺度转导动力学方面的实用性。 。为了解决这个问题,我们在本文中提出了一种新颖的多尺度建模方法,该方法基于动力学蒙特卡洛技术和MD技术的组合,并证明了其适用于研究光开关光氧信号的信号传导行为。来自Avena Sativa(AsLOV2-J)的电压2-J结构域和AsLOV2-J调节的光活化Rac1-GTPase(PA-Rac1),最近用于通过光刺激来控制癌细胞的运动。更具体地说,我们表明,它们的信号传导途径从残留的重排和随后的黄素-单核苷酸发色团附近的氨基酸的H键形成开始,导致-链之间的偶联以及随后的外围螺旋从AsLOV2脱离。 -域。在PA-Rac1系统的情况下,我们发现后面的过程诱导了AsLOV2抑制剂从GTPase的switchII激活位点释放,从而通过效应子-蛋白结合实现信号激活。这些应用表明,我们的方法能够可靠地重现复杂信号蛋白的信号传导途径,范围从纳秒到数秒不等,而且价格合理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号