...
首页> 外文期刊>The Journal of Chemical Physics >Rovibrational spectra of ammonia. I. Unprecedented accuracy of a potential energy surface used with nonadiabatic corrections
【24h】

Rovibrational spectra of ammonia. I. Unprecedented accuracy of a potential energy surface used with nonadiabatic corrections

机译:氨的旋转振动光谱。 I.非绝热校正所使用的势能面的前所未有的精度

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we build upon our previous work on the theoretical spectroscopy of ammonia, NH_3. Compared to our 2008 study, we include more physics in our rovibrational calculations and more experimental data in the refinement procedure, and these enable us to produce a potential energy surface (PES) of unprecedented accuracy. We call this the HSL-2 PES. The additional physics we include is a second-order correction for the breakdown of the Born-Oppenheimer approximation, and we find it to be critical for improved results. By including experimental data for higher rotational levels in the refinement procedure, we were able to greatly reduce our systematic errors for the rotational dependence of our predictions. These additions together lead to a significantly improved total angular momentum (J) dependence in our computed rovibrational energies. The root-mean-square error between our predictions using the HSL-2 PES and the reliable energy levels from the HITRAN database for J 0-6 and J 78 for ~(14)NH_3 is only 0.015 cm~(-1) and 0.0200.023 cm~(-1), respectively. The root-mean-square errors for the characteristic inversion splittings are approximately 13 smaller than those for energy levels. The root-mean-square error for the 6002 J 0-8 transition energies is 0.020 cm~(-1). Overall, for J 0-8, the spectroscopic data computed with HSL-2 is roughly an order of magnitude more accurate relative to our previous best ammonia PES (denoted HSL-1). These impressive numbers are eclipsed only by the root-mean-square error between our predictions for purely rotational transition energies of ~(15)NH_3 and the highly accurate Cologne database (CDMS): 0.00034 cm~(-1) (10 MHz), in other words, 2 orders of magnitude smaller. In addition, we identify a deficiency in the ~(15)NH_3 energy levels determined from a model of the experimental data.
机译:在这项工作中,我们以先前关于氨NH_3的理论光谱学为基础。与2008年的研究相比,我们在振动计算中包含了更多的物理学,在精炼过程中包含了更多的实验数据,这些使我们能够产生前所未有的精度的势能面(PES)。我们称其为HSL-2 PES。我们包括的其他物理是对Born-Oppenheimer近似分解的二阶校正,我们发现它对于改善结果至关重要。通过在细化程序中包含较高旋转级别的实验数据,我们能够大大减少由于预测的旋转相关性导致的系统误差。这些加在一起导致我们计算的旋转能量中总角动量(J)的依赖性大大改善。我们使用HSL-2 PES进行的预测与HITRAN数据库针对〜(14)NH_3的J 0-6和J 78的可靠能级之间的均方根误差仅为0.015 cm〜(-1)和0.0200分别为.023 cm〜(-1)。特征反演分裂的均方根误差大约比能级的均方根误差小13。 6002 J 0-8跃迁能量的均方根误差为0.020 cm〜(-1)。总体而言,对于J 0-8,相对于我们之前最好的氨水PES(表示为HSL-1),用HSL-2计算的光谱数据要精确大约一个数量级。这些令人印象深刻的数字仅被我们对〜(15)NH_3的纯旋转跃迁能的预测与高精度科隆数据库(CDMS):0.00034 cm〜(-1)(10 MHz)之间的均方根误差所掩盖,换句话说,小2个数量级。此外,我们确定了从实验数据模型确定的〜(15)NH_3能级的不足。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号