首页> 外文期刊>The Journal of Chemical Physics >Shock-induced transformations in crystalline RDX: A uniaxialconstant-stress Hugoniostat molecular dynamics simulation study
【24h】

Shock-induced transformations in crystalline RDX: A uniaxialconstant-stress Hugoniostat molecular dynamics simulation study

机译:晶体RDX中的激振相变:单轴恒应力恒变器分子动力学模拟研究

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular dynamics (MD) simulations of uniaxial shock compression along the [100] and [001]directions in the a polymorph of hexahydro-1,3,5-trinitro-1,3,5-triazine (α-RDX) have beenconducted over a wide range of shock pressures using the uniaxial constant stress Hugoniostatmethod [Ravelo et al., Phys. Rev. B 70, 014103 (2004)]. We demonstrate that the Hugoniostatmethod is suitable for studying shock compression in atomic-scale models of energetic materialswithout the necessity to consider the extremely large simulation cells required for an explicit shockwave simulation. Specifically, direct comparison of results obtained using the Hugoniostat approachto those reported by Thompson and co-workers [Phys. Rev. B 78, 014107 (2008)] based onlarge-scale MD simulations of shocks using the shock front absorbing boundary condition (SFABC)approach indicates that Hugoniostat simulations of systems containing several thousand moleculesreproduced the salient features observed in the SFABC simulations involving roughly aquarter-million molecules, namely, nucleation and growth of nanoscale shear bands for shockspropagating along the [100] direction and the polymorphic α- γ phase transition for shocks directedalong the [001] direction. The Hugoniostat simulations yielded predictions of the Hugoniot elasticlimit for the [100] shock direction consistent with SFABC simulation results.
机译:在六氢-1,3,5-三硝基-1,3,5-三嗪(α-RDX)的多晶型物上沿[100]和[001]方向进行单轴冲击压缩的分子动力学(MD)模拟已在使用单轴恒应力Hugoniostat方法可在很宽的冲击压力范围内使用[Ravelo等,Phys。 B 70,014103(2004)。我们证明了Hugoniostat方法适合于研究含能材料原子级模型中的冲击压缩,而无需考虑显式冲击波模拟所需的非常大的模拟单元。具体来说,直接将使用恒湿仪方法获得的结果与汤普森及其同事报道的结果进行直接比较[Phys。 Rev. B 78,014107(2008)]基于使用减震前沿吸收边界条件(SFABC)方法进行的大型MD减震模拟表明,包含数千个分子的系统的恒变恒等模拟再现了在SFABC模拟中观察到的显着特征,涉及大约四分之一百万个分子,即沿着[100]方向传播的冲击的纳米级剪切带的成核和增长,以及沿着[001]方向传播的冲击的多态性α-γ相变。 Hugoniostat模拟得出了[100]冲击方向的Hugoniot弹性极限预测,与SFABC模拟结果一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号