首页> 外文期刊>The Journal of Chemical Physics >Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface
【24h】

Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface

机译:使用精确的从头算势能面进行丙二醛基态隧穿分裂的全尺寸量子计算

获取原文
获取原文并翻译 | 示例
           

摘要

Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcal/mol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively. (C) 2008 American Institute of Physics.
机译:在全尺寸从头算势能面(PES)上进行丙二醛中H原子和D原子转移的基态振动态隧穿分裂的量子计算。 PES适合于11 147接近基本设定极限的冰芯CCSD(T)电子能量。该表面正确地描述了相对于相同原子的所有排列的电势不变性。 PES上H原子转移的鞍点势垒为4.1 kcal / mol,与报道的从头算值非常一致。使用该PES进行H和D原子转移分裂的一维和“精确”全尺寸模型计算。使用直角坐标和鞍点法向坐标中的无偏“固定节点”扩散蒙特卡洛(DMC)方法计算完整维的隧道裂隙。发现基态隧道分裂在笛卡尔坐标中为21.6 cm(-1),在法线坐标中为22.6 cm(-1),不确定性为2-3 cm(-1)。该分裂也是基于一个模型来计算的,该模型利用了通过MULTIMODE代码和DMC ZPE获得的精确的单井零点能量(ZPE),该计算给出了21-22 cm(-1)的隧穿分裂。 D原子转移的相应计算裂口为3.0、3.1和2-3 cm(-1)。这些计算的隧道裂隙彼此之间的一致性小于使用DMC方法获得的标准不确定度,介于2和3 cm(-1)之间,并且与21.6和2.9 cm(-1)的实验值非常吻合分别用于H和D传输。 (C)2008美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号