首页> 外文期刊>The Journal of Chemical Physics >Ligand protons in a frozen solution of copper histidine relax via a T_(1e)-driven three-spin mechanism
【24h】

Ligand protons in a frozen solution of copper histidine relax via a T_(1e)-driven three-spin mechanism

机译:铜组氨酸的冷冻溶液中的配体质子通过T_(1e)驱动的三轴机制松弛

获取原文
获取原文并翻译 | 示例
           

摘要

Davies electron-nuclear double resonance spectra can exhibit strong asymmetries for long mixing times,short repetition times,and large thermal polarizations.These asymmetries can be used to determine nuclear relaxation rates in paramagnetic systems.Measurements of frozen solutions of copper(L-histidine)_2 reveal a strong field dependence of the relaxation rates of the protons in the histidine ligand,increasing from low (g_(||)) to high (g_(perpendicular)) field.It is shown that this can be attributed to a concentration-dependent T_(1e)-driven relaxation process involving strongly mixed states of three spins:the histidine proton,the Cu(II) electron spin of the same complex,and another distant electron spin with a resonance frequency differing from the spectrometer frequency approximately by the proton Larmor frequency.The protons relax more efficiently in the g_(perpendicular) region,since the number of distant electrons able to participate in this relaxation mechanism is higher than in the g_(perpendicular) region.Analytical expressions for the associated nuclear polarization decay rate T_(een)~(-1) are developed and Monte Carlo simulations are carried out,reproducing both the field and the concentration dependences of the nuclear relaxation.
机译:戴维斯电子-核双共振谱可表现出很强的不对称性,可延长混合时间,缩短重复时间并具有较大的热极化,这些不对称性可用于确定顺磁系统中的核弛豫率。铜(L-组氨酸)的冷冻溶液的测量_2揭示了组氨酸配体中质子弛豫速率的强场依赖性,从低(g_(||))场增强到高(g_(垂直))场。这可以归因于浓度-依赖的T_(1e)驱动弛豫过程,涉及三个自旋的强混合状态:组氨酸质子,同一配合物的Cu(II)电子自旋和另一个遥远的电子自旋,其共振频率与光谱仪频率相差大约质子拉莫尔频率。质子在g_(垂直)区域更有效地弛豫,因为能够参与这种弛豫机制的远电子数量比提出了相关的核极化衰变速率T_(een)〜(-1)的解析表达式,并进行了蒙特卡洛模拟,再现了核弛豫的场和浓度依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号