...
首页> 外文期刊>The Journal of Chemical Physics >On the excited electronic state dissociation of nitramine energetic materials and model systems
【24h】

On the excited electronic state dissociation of nitramine energetic materials and model systems

机译:硝胺高能材料的激发电子态解离及模型系统

获取原文
获取原文并翻译 | 示例
           

摘要

In order to elucidate the difference between nitramine energetic materials,such as RDX(1,3,5-trinitro-1,3,5-triazacyclohexane),HMX(1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane),and CL-20(2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane),and their nonenergetic model systems,including 1,4-dinitropiperazine,nitropiperidine,nitropyrrolidine,and dimethylnitramine,both nanosecond mass resolved excitation spectroscopy and femtosecond pump-probe spectroscopy in the UV spectral region have been employed to investigate the mechanisms and dynamics of the excited electronic state photodissociation of these materials.The NO molecule is an initial decomposition product of all systems.The NO molecule from the decomposition of energetic materials displays cold rotational and hot vibrational spectral structures.Conversely,the NO molecule from the decomposition of model systems shows relatively hot rotational and cold vibrational spectra.In addition,the intensity of the NO ion signal from energetic materials is proportional to the number of nitramine functional groups in the molecule.Based upon experimental observations and theoretical calculations of the potential energy surface for these systems,we suggest that energetic materials dissociate from ground electronic states after internal conversion from their first excited states,and model systems dissociate from their first excited states.In both cases a nitro-nitrite isomerization is suggested to be part of the decomposition mechanism.Parent ions of dimethylnitramine and nitropyrrolidine are observed in femtosecond experiments.All the other molecules generate NO as a decomposition product even in the femtosecond time regime.The dynamics of the formation of the NO product is faster than 180 fs,which is equivalent to the time duration of our laser pulse.
机译:为了阐明硝胺类高能材料之间的区别,例如RDX(1,3,5-trinitro-1,3,5-triazacyclohexa),HMX(1,3,5,7-tetranitro-1,3,5, 7-四氮杂环辛烷)和CL-20(2,4,6,8,10,12-六硝基-2,4,6,8,10,12-六氮杂异纤锌矿型结构烷烃)及其非能量模型系统,包括1,4-二硝基哌嗪,硝基哌啶,硝基吡咯烷和二甲基硝胺在紫外光谱区域中均采用纳秒质量分辨激发光谱和飞秒泵浦探针光谱研究了这些材料的激发电子态光解离的机理和动力学.NO分子是所有系统的初始分解产物。高能材料分解产生的NO分子表现出冷的旋转和热振动光谱结构。反之,模型系统分解产生的NO分子显示出相对的热旋转和冷振动光谱。来自en的NO离子信号高能材料与分子中硝胺官能团的数量成正比。基于实验观察和这些系统的势能面的理论计算,我们建议高能材料在从其最初的激发态进行内部转换后从基态电子态解离,模型和模型系统从其最初的激发态解离。在这两种情况下,均建议亚硝酸盐异构化是分解机理的一部分。在飞秒实验中观察到二甲基硝胺和硝基吡咯烷的母离子。所有其他分子均产生NO作为分解产物。即使在飞秒时间范围内,NO产物形成的动力学也快于180 fs,这相当于我们的激光脉冲的持续时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号