首页> 外文学位 >Excited electronic state decomposition mechanisms and dynamics of nitramine energetic materials and model systems.
【24h】

Excited electronic state decomposition mechanisms and dynamics of nitramine energetic materials and model systems.

机译:兴奋的电子态分解机理以及硝胺高能材料和模型系统的动力学。

获取原文
获取原文并翻译 | 示例

摘要

Energetic materials play an important role in aeronautics, the weapon industry, and the propellant industry due to their broad applications as explosives and fuels. RDX (1,3,5-trinitrohexahydro-s-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) are compounds which contain high energy density. Although RDX and HMX have been studied extensively over the past several decades a complete understanding of their decomposition mechanisms and dynamics is unknown.; Time of flight mass spectroscopy (TOFMS) UV photodissociation (ns) experiments of gas phase RDX, HMX, and CL-20 generate the NO molecule as the initial decomposition product. Four different vibronic transitions of the initial decomposition product, the NO molecule, are observed: A2Sigma(upsilon'=0)←X 2pi(upsilon"=0,1,2,3). Simulations of the rovibronic intensities for the A←X transitions demonstrate that NO dissociated from RDX, HMX, and CL-20 is rotationally cold (∼20 K) and vibrationally hot (∼1800 K). Conversely, experiments on the five model systems (nitromethane, dimethylnitramine (DMNA), nitropyrrolidine, nitropiperidine and dinitropiperazine) produce rotationally hot and vibrationally cold spectra.; Laser induced fluorescence (LIF) experiments are performed to rule out the possible decomposition product OH, generated along with NO, perhaps from the suggested HONO elimination mechanism. The OH radical is not observed in the fluorescence experiments, indicating the HONO decomposition intermediate is not an important pathway for the excited electronic state decomposition of cyclic nitramines.; The NO molecule is also employed to measure the dynamics of the excited state decomposition. A 226 nm, 180 fs light pulse is utilized to photodissociate the gas phase systems. Stable ion states of DMNA and nitropyrrolidine are observed while the energetic materials and remaining model systems present the NO molecule as the only observed product.{09}Pump-probe transients of the resonant A←X (0-0) transition of the NO molecule show a constant signal indicating these materials decompose faster than the time duration of the 226 nm laser light.; Calculational results together with the experimental results indicate the energetic materials decompose through an internal conversion to very highly excited (∼5 eV of vibrational energy) vibrational states of their ground electronic state, while the model systems follow an excited electronic state decomposition pathway.
机译:高能材料由于在爆炸物和燃料中的广泛应用,在航空,武器工业和推进剂工业中起着重要作用。 RDX(1,3,5-三硝基六氢-s-三嗪),HMX(八氢-1,3,5,7-四硝基-1,3,5,7-四唑啉)和CL-20(2,4,6 (8,10,12-六硝基-2,4,6,8,10,12-六氮杂异纤锌矿型结构烷烃)是具有高能量密度的化合物。尽管在过去的几十年中对RDX和HMX进行了广泛的研究,但对它们的分解机理和动力学的完整了解尚不清楚。飞行时间质谱(TOFMS)气相RDX,HMX和CL-20的UV光解离(ns)实验生成NO分子作为初始分解产物。观察到初始分解产物NO分子的四个不同的电子振动跃迁:A2Sigma(upsilon'= 0)←X 2pi(upsilon“ = 0,1,2,3)。A←X的振子强度模拟相变表明,从RDX,HMX和CL-20分离出的NO处于旋转冷态(〜20 K)和振动热态(〜1800 K),相反,在五个模型系统(硝基甲烷,二甲基亚硝胺(DMNA),硝基吡咯烷,硝基哌啶)上进行了实验。 ;和二硝基哌嗪)产生旋转热和振动冷光谱;进行激光诱导荧光(LIF)实验,以排除可能与建议的HONO消除机理有关的,与NO一起生成的分解产物OH。荧光实验表明,HONO分解中间体不是环状硝胺的激发电子态分解的重要途径; NO分子也用于测量环己胺的动力学。激发态分解。 226 nm,180 fs的光脉冲用于光解气相系统。观察到DMNA和硝基吡咯烷的离子状态稳定,而高能材料和其余模型系统将NO分子作为唯一观察到的产物。{09} NO分子共振A←X(0-0)跃迁的泵浦瞬态显示恒定信号,表明这些物质的分解速度比226 nm激光的持续时间快。计算结果和实验结果表明,高能材料通过内部转换成其基态电子状态的高度激发(约5 eV振动能量)振动态而分解,而模型系统遵循激发态电子分解路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号