首页> 外文学位 >Part 1: Excited electronic state decomposition of energetic molecules. Part 2: Conformation specific reactivity of radical cation intermediates of bioactive molecules.
【24h】

Part 1: Excited electronic state decomposition of energetic molecules. Part 2: Conformation specific reactivity of radical cation intermediates of bioactive molecules.

机译:第1部分:高能分子的激发电子态分解。第2部分:生物活性分子的自由基阳离子中间体的构象特异性反应性。

获取原文
获取原文并翻译 | 示例

摘要

Energetic materials have a wide variety of industrial, civil, and military applications. They include a number of organic compounds such as RDX (1,3,5-trinitroheahydro-s-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), DAAF (3,3'-diamino-4,4'-azoxyfurazan), DAATO3.5 (3,3'-azobis(6-amino-1,2,4,5-tetrazine)-mixed N-oxides), etc. These materials release huge chemical energy during their decomposition. The decomposition of energetic materials is initiated with a shock or compression wave or a spark. Such events in solids generate molecules in the excited electronic states. Hence, in order to maximize release of the stored chemical energy in the most efficient and useful manner and to design new energetic materials, the unimolecular decomposition mechanisms and dynamics from excited electronic states should be understood for these systems. This thesis describes understanding about unimolecular decomposition of energetic materials from their excited electronic states. A few fundamental questions at molecular level dealing with electronic excitation of energetic materials are addressed here: (a) what happens immediately after electronic excitation of energetic molecules?; (b) how is excess energy partitioned among product molecules following electronic excitation?; (b) what are the mechanism and dynamics of molecular decomposition?; (d) does nonadiabatic chemistry (a process that spans multiple electronic potential energy surfaces) through conical intersection (crossing of different potential energy surfaces) dominate system behavior?;Part 2 of this thesis discusses about conformation specific reactivity of radical cation intermediates of biomolecules. The radical cation intermediates are generated by means of removal of an electron from the parent biomolecules due to the effect of ionizing radiation, oxidative stress, and metal cofactors, which finally causes extensive damage to amino acids, peptides, and living body. Therefore, a detailed conformation specific characterization of the reactivity and stability of radical cationic bioactive species is highly desirable.;In this effort, first, conformation specific radical cation intermediate chemistry of alpha-substituted (amino, hydroxy, and keto) bioactive carboxylic acids is discussed. Finally, folding specific reactivity of small peptide analogues is addressed. The reactivity of radical cation carboxylic acids and peptide analogue molecule is investigated on the basis of mass spectrometry, infrared-vacuum ultraviolet (IR-VUV) photoionization spectroscopy, and high-level correlated ab initio calculations. Their reactivity is found to be highly conformation specific and is governed by their initial charge distribution following ionization. In the present work, the radical cations of lactic acid, pyruvic acid, glycine, valine, and a peptide analogue CH 3CO-Gly-NH2 are studied to probe their stability and conformation specific reactivity following single photon, vertical ionization at 10.5 eV. For lactic acid, glycine, and valine, the localization site of the hole following sudden removal of an electron depends on their specific intramolecular hydrogen bonding network. Folding/turn specific dissociation of radical cationic peptide analogue CH3CO-Gly-NH2 is also predicted. Thus, the present study reveals that the specific conformations of biomolecules govern their radical cationic reactivity. (Abstract shortened by UMI.)
机译:高能材料具有广泛的工业,民用和军事应用。它们包括许多有机化合物,例如RDX(1,3,5-三硝基hehydrohydro-s-triazine),HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine),DAAF (3,3'-二氨基-4,4'-azoxyfurazan),DAATO3.5(3,3'-偶氮双(6-氨基-1,2,4,5-四嗪)混合的N-氧化物)等。这些材料在分解过程中释放出巨大的化学能。高能物质的分解是由冲击波或压缩波或火花引发的。固体中的此类事件会产生处于激发态的电子状态的分子。因此,为了以最有效和最有用的方式最大程度地释放所存储的化学能并设计新的高能材料,对于这些系统,应理解单分子分解机理和受激电子态的动力学。本文描述了关于高能材料从其激发电子态的单分子分解的理解。这里讨论了一些涉及高能材料电子激发的分子水平的基本问题:(a)高能分子电子激发后立即发生什么? (b)多余的能量在电子激发后如何在产物分子之间分配? (b)分子分解的机理和动力学是什么? (d)非绝热化学(跨越多个电子势能表面的过程)通过圆锥形相交(不同势能表面的交叉)是否主导系统行为?;本论文的第二部分讨论了生物分子自由基阳离子中间体的构象比反应性。自由基阳离子中间体是通过电离辐射,氧化应激和金属辅因子的作用,从母体生物分子中除去电子而产生的,最终对氨基酸,肽和生物造成广泛破坏。因此,非常需要自由基阳离子生物活性物质的反应性和稳定性的详细的构象特异性表征。;在这种努力中,首先,α-取代的(氨基,羟基和酮)生物活性羧酸的构象特异性自由基阳离子中间化学是讨论过。最后,解决了小肽类似物的折叠特异性反应性。自由基阳离子羧酸和肽类似物分子的反应性是在质谱,红外-真空紫外(IR-VUV)光电离光谱和高水平相关从头计算的基础上进行研究的。发现它们的反应性是高度构象特异性的,并受电离后其初始电荷分布的支配。在本工作中,研究了乳酸,丙酮酸,甘氨酸,缬氨酸和肽类似物CH 3CO-Gly-NH2的自由基阳离子,以探测其在单光子,垂直电离为10.5 eV后的稳定性和构象比反应性。对于乳酸,甘氨酸和缬氨酸,突然去除电子后空穴的定位位置取决于它们特定的分子内氢键网络。还预测了自由基阳离子肽类似物CH3CO-Gly-NH2的折叠/转特异性解离。因此,本研究揭示了生物分子的特定构象控制着其自由基阳离子反应性。 (摘要由UMI缩短。)

著录项

  • 作者

    Bhattacharya, Atanu.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Chemistry Molecular.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 384 p.
  • 总页数 384
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号