首页> 外文期刊>The Journal of Chemical Physics >Excited electronic state decomposition of furazan based energetic materials: 3,3 '-diamino-4,4 '-azoxyfurazan and its model systems, diaminofurazan and furazan
【24h】

Excited electronic state decomposition of furazan based energetic materials: 3,3 '-diamino-4,4 '-azoxyfurazan and its model systems, diaminofurazan and furazan

机译:呋喃类高能材料的兴奋电子态分解:3,3'-二氨基-4,4'-偶氮呋喃及其模型系统,二氨基呋喃和呋喃

获取原文
获取原文并翻译 | 示例
           

摘要

We report the first experimental and theoretical study of gas phase excited electronic state decomposition of a furazan based, high nitrogen content energetic material, 3,3(')-diamino-4,4(')-azoxyfurazan (DAAF), and its model systems, diaminofurazan (DAF) and furazan (C2H2N2O). DAAF has received major attention as an insensitive high energy explosive; however, the mechanism and dynamics of the decomposition of this material are not clear yet. In order to understand the initial decomposition mechanism of DAAF and those of its model systems, nanosecond energy resolved and femtosecond time resolved spectroscopies and complete active space self-consistent field (CASSCF) calculations have been employed to investigate the excited electronic state decomposition of these materials. The NO molecule is observed as an initial decomposition product from DAAF and its model systems at three UV excitation wavelengths (226, 236, and 248 nm) with a pulse duration of 8 ns. Energies of the three excitation wavelengths coincide with the (0-0), (0-1), and (0-2) vibronic bands of the NO A (2)Sigma(+)<- X (2)Pi electronic transition, respectively. A unique excitation wavelength independent dissociation channel is observed for DAAF, which generates the NO product with a rotationally cold (20 K) and a vibrationally hot (1265 K) distribution. On the contrary, excitation wavelength dependent dissociation channels are observed for the model systems, which generate the NO product with both rotationally cold and hot distributions depending on the excitation wavelengths. Potential energy surface calculations at the CASSCF level of theory illustrates that two conical intersections between the excited and ground electronic states are involved in two different excitation wavelength dependent dissociation channels for the model systems. Femtosecond pump-probe experiments at 226 nm reveal that the NO molecule is still the main observed decomposition product from the materials of interest and that the formation dynamics of the NO product is faster than 180 fs. Two additional fragments are observed from furazan with mass of 40 amu (C2H2N) and 28 amu (CH2N) employing femtosecond laser ionization. This observation suggests a five-membered heterocyclic furazan ring opening mechanism with rupture of a CN and a NO bond, yielding NO as a major decomposition product. NH2 is not observed as a secondary decomposition product of DAAF and DAF. (c) 2008 American Institute of Physics.
机译:我们报告了基于呋喃山,高氮含量高能材料3,3(')-diamino-4,4(')-azoxyfurazan(DAAF)的气相激发电子态分解的首次实验和理论研究二氨基呋喃(DAF)和呋喃(C2H2N2O)系统。 DAAF作为一种不敏感的高能炸药受到了广泛的关注。但是,这种物质分解的机理和动力学尚不清楚。为了了解DAAF及其模型系统的初始分解机理,已采用纳秒能量分辨和飞秒时间分辨光谱以及完整的有源空间自洽场(CASSCF)计算来研究这些材料的激发电子态分解。 。观察到NO分子是DAAF及其模型系统在三个UV激发波长(226、236和248 nm)下的初始分解产物,脉冲持续时间为8 ns。这三个激发波长的能量与NO A(2)Sigma(+)<-X(2)Pi电子跃迁的(0-0),(0-1)和(0-2)振动带一致,分别。对于DAAF,观察到一个独特的与激发波长无关的解离通道,它产生的NO产物具有旋转冷(20 K)和振动热(1265 K)分布。相反,在模型系统中观察到了依赖于激发波长的解离通道,该系统根据激发波长生成具有旋转冷分布和热分布的NO产物。在CASSCF理论水平上的势能面计算表明,在激发态和基态电子态之间的两个圆锥形交点涉及模型系统的两个不同激发波长相关的解离通道。飞秒泵浦探针实验在226 nm处发现,NO分子仍然是目标材料中观察到的主要分解产物,并且NO产物的形成动力学快于180 fs。使用飞秒激光电离,从呋喃山中观察到两个质量为40 amu(C2H2N)和28 amu(CH2N)的碎片。该观察结果表明五元杂环呋喃环开环机制具有CN和NO键的断裂,产生NO作为主要分解产物。未观察到NH2作为DAAF和DAF的二次分解产物。 (c)2008年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号