首页> 外文期刊>The Journal of Chemical Physics >Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces
【24h】

Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces

机译:分子-溶剂界面弯曲元素离散化的数值积分技术

获取原文
获取原文并翻译 | 示例
           

摘要

Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties.Numerical simulations based on these formulations usually begin with discretization of the surface under consideration;often,the surface is curved,possessing complicated structure and possibly singularities.Numerical simulations commonly are based on approximate,rather than exact,discretizations of these surfaces.To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation,here methods were developed to model several important surface formulations using exact surface discretizations.Following and refining Zauhar's work [J.Comput.-Aided Mol.Des.9,149 (1995)],two classes of curved elements were defined that can exactly discretize the van der Waals,solvent-accessible,and solvent-excluded (molecular) surfaces.Numerical integration techniques are presented that can accurately evaluate nonsingular and singular integrals over these curved surfaces.After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods,a set of calculations are presented that compare the accuracy of approximate,planar-triangle-based discretizations and exact,curved-element-based simulations of surface-generalized-Born (sGB),surface-continuum van der Waals (scvdW),and boundary-element method (BEM) electrostatics problems.Results demonstrate that continuum electrostatic calculations with BEM using curved elements,piecewise-constant basis functions,and centroid collocation are nearly ten times more accurate than planar-triangle BEM for basis sets of comparable size.The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces.The extra accuracy is attributed to the exact representation of the solute-solvent interface;in contrast,commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources.The results clearly demonstrate that the methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry.A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online as supplemental material.
机译:生物物理建模问题的表面公式提供了诱人的理论和计算属性。基于这些公式的数值模拟通常从考虑中的表面离散化开始;通常是曲面弯曲,具有复杂的结构和可能的奇异性。数值模拟通常基于近似为了评估模拟精度对表面表示保真度的依赖性,本文开发了使用精确的表面离散化方法对几种重要的表面配方建模的方法。计算辅助分子,Des.9,149(1995)]中,定义了两类弯曲元素,它们可以精确地离散范德华,溶剂可及和溶剂排除(分子)表面。准确评估这些曲线上的非奇异和奇异积分在验证了曲面离散化的正确性并证明了所提出的积分方法的正确性之后,提出了一组计算,这些计算比较了近似的,基于平面三角形的离散化和基于曲面的精确,基于弯曲元素的模拟的精度广义玻恩(sGB),表面连续范德华(scvdW)和边界元方法(BEM)静电问题。结果表明,利用BEM使用曲线元素,分段常数基函数和质心搭配进行连续体静电计算对于相当大小的基集,其精度比平面三角形BEM高出近十倍.sGB和scvdW计算即使对于可获得的最粗糙的离散表面也能提供卓越的精度。相比之下,通常使用的平面三角形离散化只能提供随着散度增加而提高的近似值。结果清楚地表明,在精确几何上进行近似积分的方法要比在近似几何上进行精确积分的方法精确得多。所提出的积分方法和包含弯曲元素的示例数据文件的MATLAB实现几个小分子的离散化可作为补充材料在线获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号