首页> 外文期刊>The Journal of Chemical Physics >Modeling signal transduction networks: A comparison of two stochastic kinetic simulation algorithms
【24h】

Modeling signal transduction networks: A comparison of two stochastic kinetic simulation algorithms

机译:信号传导网络建模:两种随机动力学仿真算法的比较

获取原文
获取原文并翻译 | 示例
           

摘要

Computational efficiency of stochastic kinetic algorithms depend on factors such as the overall species population, the total number of reactions, and the average number of nodal interactions or connectivity in a network. These size measures of the network model can have a significant impact on computational efficiency. In this study, two scalable biological networks are used to compare the size scaling efficiencies of two popular and conceptually distinct stochastic kinetic simulation algorithms-the random substrate method of Firth and Bray (FB), and the Gillespie algorithm as implemented using the Gibson-Bruck method (GGB). The arithmetic computational efficiencies of these two algorithms, respectively, scale with the square of the total species population and the logarithm of the total number of active reactions. The two scalable models considered are the size scalable model (SSM), a four compartment reaction model for a signal transduction network involving receptors with single phosphorylation binding sites, and the variable connectivity model (VCM), a single compartment model where receptors possess multiple phosphorylation binding sites. The SSM has fixed species connectivity while the connectivity between species in VCM increases with the number of phosphorylation sites. For SSM, we find that, as the total species population is increased over four orders of magnitude, the GGB algorithm performs significantly better than FB for all three SSM compartment models considered. In contrast, for VCM, we find that as the overall species population decreases while the number of phosphorylation sites increases (implying an increase in network linkage) there exists a crossover point where the computational demands of the GGB method exceed that of the FB. (c) 2005 American Institute of Physics.
机译:随机动力学算法的计算效率取决于各种因素,例如总体物种总数,反应总数以及网络中节点相互作用或连通性的平均数目。网络模型的这些大小度量可能会对计算效率产生重大影响。在这项研究中,使用了两个可扩展的生物网络来比较两种流行且概念上不同的随机动力学模拟算法(Firth和Bray(FB)的随机底物方法,以及使用Gibson-Bruck实现的Gillespie算法)的尺寸缩放效率。方法(GGB)。这两种算法的算术计算效率分别与总物种总数的平方和活性反应总数的对数成比例。所考虑的两个可扩展模型是尺寸可扩展模型(SSM),用于信号转导网络的四部分反应模型,该模型涉及涉及具有单个磷酸化结合位点的受体,而可变连通性模型(VCM)是其中受体具有多个磷酸化的单部分模型结合位点。 SSM具有固定的物种连通性,而VCM中物种之间的连通性随磷酸化位点数量的增加而增加。对于SSM,我们发现,随着总物种数量增加四个数量级,对于所考虑的所有三个SSM隔室模型,GGB算法的性能均明显优于FB。相比之下,对于VCM,我们发现随着物种总数的减少而磷酸化位点数量的增加(暗示网络链接的增加),存在一个交叉点,其中GGB方法的计算需求超过了FB。 (c)2005年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号