首页> 外文期刊>The Journal of Chemical Physics >From molecular dynamics to hydrodynamics: A novel Galilean invariant thermostat
【24h】

From molecular dynamics to hydrodynamics: A novel Galilean invariant thermostat

机译:从分子动力学到流体动力学:新型伽利略恒定恒温器

获取原文
获取原文并翻译 | 示例
           

摘要

This paper proposes a novel thermostat applicable to any particle-based dynamic simulation. Each pair of particles is thermostated either (with probability P) with a pairwise Lowe-Andersen thermostat [C. P. Lowe, Europhys. Lett. 47, 145 (1999)] or (with probability 1 - P) with a thermostat that is introduced here, which is based on a pairwise interaction similar to the Nose-Hoover thermostat. When the,,pairwise Nose-Hoover thermostat dominates (low P), the liquid has a high diffusion coefficient and low viscosity, but when the Lowe-Andersen thermostat dominates, the diffusion coefficient is low and viscosity is high. This. novel Nose-Hoover-Lowe-Andersen thermostat, is Galilean invariant and preserves both total linear and angular momentum of the system, due to the fact that the thermostatic forces between each pair of the particles are pairwise additive and central. We show by simulation that this. thermostat also preserves hydrodynamics. For the (noninteracting) ideal gas at P = 0, the diffusion coefficient diverges and viscosity is zero, while for P > 0 it has a finite value. By adjusting probability P, the Schmidt number can be varied by orders of magnitude. The temperature deviation from the required value is at least an order of magnitude smaller than in dissipative particle dynamics (DPD), while the equilibrium properties of the system are very well reproduced. The thermostat is easy to implement and offers a computational efficiency better, than (DPD), with better temperature control and greater flexibility in terms of adjusting the diffusion coefficient and. viscosity of the simulated system. Applications of this thermostat include all standard molecular dynamic simulations of dense liquids and solids with any type of force field, as well as hydrodynamic simulation of multiphase systems with largely different bulk viscosities, including surface viscosity, and, of dilute gases and plasmas. (c) 2005 American Institute of Physics.
机译:本文提出了一种适用于任何基于粒子的动态仿真的新型恒温器。每对粒子都使用成对的Lowe-Andersen恒温器[C. P. Lowe,Europhys。来吧47,145(1999)]或(此处概率为1-P)带有此处介绍的恒温器,该恒温器基于类似于Nose-Hoover恒温器的成对相互作用。当成对的鼻-胡佛恒温器占主导地位(低P)时,液体具有高扩散系数和低粘度,但是当Lowe-Andersen恒温器占主导地位时,扩散系数低且粘度高。这个。新颖的Nose-Hoover-Lowe-Andersen恒温器是伽利略不变式,并且由于每对粒子之间的恒温力是成对加性和集中式的事实,因此保留了系统的总线性和角动量。我们通过仿真表明这一点。恒温器还保留了流体力学。对于在P = 0时(非相互作用)的理想气体,扩散系数发散并且粘度为零,而对于P> 0,它具有有限值。通过调整概率P,可以将施密特数改变几个数量级。与要求值的温度偏差至少比耗散粒子动力学(DPD)小一个数量级,而系统的平衡特性则得到了很好的再现。与(DPD)相比,该恒温器易于实现,并提供了更高的计算效率,具有更好的温度控制和在调节扩散系数方面的更大灵活性。模拟系统的粘度。该恒温器的应用包括在任何类型的力场下对稠密液体和固体进行的所有标准分子动力学模拟,以及对具有相异体积粘度(包括表面粘度)以及稀薄气体和等离子体的多相系统进行流体动力学模拟。 (c)2005年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号