首页> 外文期刊>The Journal of Chemical Physics >Molecular simulation of the transition from liquidlike to solidlike behavior in complex fludis confined to nanoscale gaps
【24h】

Molecular simulation of the transition from liquidlike to solidlike behavior in complex fludis confined to nanoscale gaps

机译:复杂流体中从液态到固态行为转变的分子模拟

获取原文
获取原文并翻译 | 示例
           

摘要

We report molecular dynamics simulations at.ambient temperature and pressure of dodecane films of thickness between three and eight molecular layers confined between mica surfaces. We use an accurate united-atom model for dodecane and an effective interaction between the dodecane and the confining mica surfaces that is consistent with the surface energy of a mica surface. At ambient normal pressure, the strong surface-fluid interaction leads to increased dodecane density as the wall spacing is narrowed, crossing into a density region corresponding to bulk solid when the confined film becomes narrower than six molecular layers. Correspondingly, we observed a dramatic transition from a liquidlike to an ordered, solidlike structure when the confined dodecane film is reduced from seven to six molecular layers, consistent with experimental observation of many orders of magnitude increase in viscosity at the same film thickness. The solidlike structure is characterized by the layering as well as the in-plane orientational order of the dodecane molecules. At an extreme confinement of three molecular layers, the solidlike confined film is able to sustain a nonzero shear stress. These results with realistic models provide an improved understanding of the solidlike behavior observed in surface force apparatus experiments.
机译:我们报道了在室温和十二烷膜的压力下的分子动力学模拟,该膜的厚度介于云母表面之间的三到八个分子层之间。我们对十二烷使用精确的联合原子模型,并在十二烷与约束云母表面之间进行有效的相互作用,该相互作用与云母表面的表面能一致。在环境常压下,当壁间距变窄时,强的表面-流体相互作用会导致十二烷密度增加,当密闭膜变得比六个分子层窄时,其进入对应于块状固体的密度区域。相应地,当密闭十二烷膜从七层减少到六层分子时,我们观察到了从液态到有序的固态结构的急剧转变,这与在相同膜厚下粘度增加了多个数量级的实验观察一致。固体状结构的特征在于十二烷分子的分层以及面内取向顺序。在三个分子层的极端限制下,固体限制膜能够承受非零的剪切应力。这些具有实际模型的结果可以更好地理解在表面力设备实验中观察到的固体行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号