首页> 外文期刊>The Journal of Chemical Physics >Direct observation of charge-transfer-to-solvent (CTTS) reactions: Ultrafast dynamics of the photoexcited alkali metal anion sodide (Na-)
【24h】

Direct observation of charge-transfer-to-solvent (CTTS) reactions: Ultrafast dynamics of the photoexcited alkali metal anion sodide (Na-)

机译:直接观察电荷转移到溶剂(CTTS)反应:光激发碱金属阴离子钠(Na-)的超快动力学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Charge-transfer-to-solvent (CTTS) transitions have been the subject of a great deal of interest recently because they represent the simplest possible charge transfer reaction: The CTTS electron transfer from an atomic ion to a cavity in the surrounding solvent involves only electronic degrees of freedom. Most of the work in this area, both experimental and theoretical, has focused on aqueous halides. Experimentally, however, halides make a challenging choice for studying the CTTS phenomenon because the relevant spectroscopic transitions are deep in the UV and because the charge-transfer dynamics can be monitored only indirectly through the appearance of the solvated electron. In this paper, we show that these difficulties can be overcome by taking advantage of the CTTS transitions in solutions of alkali metal anions, in particular, the near-IR CTTS band of sodide (Na-) in tetrahydrofuran (THF). Using femtosecond pump-probe techniques, we have been able to spectroscopically separate and identify transient absorption contributions not only from the solvated electron, but also from the bleaching dynamics of the Na- ground state and from the absorption of the neutral sodium atom. Perhaps most importantly, we also have been able to directly observe the decay of the Na-* excited CTTS state, providing the first direct measure of the electron transfer rate for any CTTS system. Taken together, the data at a variety of pump and probe wavelengths provide a direct test for several kinetic models of the CTTS process. The model which best fits the data assumes a delayed ejection of the electron from the CTTS excited state in similar to 700 fs. Once ejected, a fraction of the electrons, which remain localized in the vicinity of the neutral sodium parent atom, recombine on a similar to 1.5-ps time scale. The fraction of electrons that recombine depends sensitively on the choice of excitation wavelength, suggesting multiple pathways for charge transfer. The spectrum of the neutral sodium atom, which appears on the similar to 700-fs charge-transfer time scale, matches well with a species of stochiometry (Na+, e(-)) that has been identified in the radiation chemistry literature. All the results are compared to previous studies of both CTTS dynamics and alkali metal solutions, and the implications for charge transfer are discussed. (C) 2000 American Institute of Physics. [S0021-9606(00)50221-9]. [References: 69]
机译:电荷转移到溶剂(CTTS)过渡最近成为人们关注的主题,因为它们代表了最简单的可能的电荷转移反应:CTTS从原子离子到周围溶剂腔中的电子转移仅涉及电子自由程度。该领域的大部分工作,无论是实验性的还是理论性的,都集中在卤化水溶液上。然而,从实验上讲,卤化物是研究CTTS现象的一项具有挑战性的选择,因为相关的光谱跃迁在UV中很深,并且由于只能通过溶剂化电子的出现间接监测电荷转移动力学。在本文中,我们表明可以通过利用碱金属阴离子溶液中的CTTS跃迁,尤其是四氢呋喃(THF)中的硫化物(Na-)的近IR CTTS带克服这些困难。使用飞秒泵浦探针技术,我们已经能够从光谱学上分离并识别出瞬态吸收贡献,不仅来自溶剂化电子,还来自Na基态的漂白动力学以及中性钠原子的吸收。也许最重要的是,我们还能够直接观察Na- *激发的CTTS状态的衰减,从而为任何CTTS系统提供了电子传递速率的第一个直接量度。综上所述,各种泵浦和探针波长的数据直接为CTTS过程的多个动力学模型提供了直接测试。最适合该数据的模型假设电子从CTTS激发态的延迟喷射大约为700 fs。一旦射出,一部分保留在中性钠母体原子附近的电子以约1.5 ps的时间尺度复合。重组的电子分数敏感地取决于激发波长的选择,表明存在多种电荷转移途径。类似于700-fs电荷转移时间尺度出现的中性钠原子光谱,与辐射化学文献中已确定的一种化学计量比(Na +,e(-))很好地匹配。将所有结果与先前对CTTS动力学和碱金属溶液的研究进行了比较,并讨论了电荷转移的意义。 (C)2000美国物理研究所。 [S0021-9606(00)50221-9]。 [参考:69]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号