首页> 外文期刊>Plant physiology >Deoxyxylulose 5-Phosphate Synthase Controls Flux through the Methylerythritol 4-Phosphate Pathway in Arabidopsis
【24h】

Deoxyxylulose 5-Phosphate Synthase Controls Flux through the Methylerythritol 4-Phosphate Pathway in Arabidopsis

机译:脱氧木酮糖5-磷酸合酶通过拟南芥中的甲基赤藓糖醇4-磷酸途径控制通量。

获取原文
获取原文并翻译 | 示例
           

摘要

The 2-C-methylerythritol 4-phosphate (MEP) pathway supplies precursors for plastidial isoprenoid biosynthesis including carotenoids, redox cofactor side chains, and biogenic volatile organic compounds. We examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), using metabolic control analysis. Multiple Arabidopsis (Arabidopsis thaliana) lines presenting a range of DXS activities were dynamically labeled with ~(13)CO_2 in an illuminated, climate-controlled, gas exchange cuvette. Carbon was rapidly assimilated into MEP pathway intermediates, but not into the mevalonate pathway. A flux control coefficient of 0.82 was calculated for DXS by correlating absolute flux to enzyme activity under photosynthetic steady-state conditions, indicating that DXS is the major controlling enzyme of the MEP pathway. DXS manipulation also revealed a second pool of a downstream metabolite, 2-Cmethylerythritol-2,4-cyclodiphosphate (MEcDP), metabolically isolated from the MEP pathway. DXS overexpression led to a 3- to 4-fold increase in MEcDP pool size but to a 2-fold drop in maximal labeling. The existence of this pool was supported by residual MEcDP levels detected in dark-adapted transgenic plants. Both pools of MEcDP are closely modulated by DXS activity, as shown by the fact that the concentration control coefficient of DXS was twice as high for MEcDP (0.74) as for 1-deoxyxylulose 5-phosphate (0.35) or dimethylallyl diphosphate (0.34). Despite the high flux control coefficient for DXS, its overexpression led to only modest increases in isoprenoid end products and in the photosynthetic rate. Diversion of flux via MEcDP may partly explain these findings and suggests new opportunities to engineer the MEP pathway.
机译:2-C-甲基赤藓糖醇4-磷酸酯(MEP)途径为质体类异戊二烯生物合成提供前体,包括类胡萝卜素,氧化还原辅因子侧链和生物挥发性有机化合物。我们使用代谢控制分析检查了该途径的第一个酶,即1-脱氧木酮糖5-磷酸合酶(DXS)。在照明,可控气候的气体交换比色杯中,用〜(13)CO_2动态标记具有多种DXS活性的多个拟南芥(Arabidopsis thaliana)品系。碳被迅速吸收到MEP途径中间体中,但没有吸收到甲羟戊酸途径中。通过将绝对通量与光合作用稳态条件下的酶活性相关联,DXS的通量控制系数为0.82,表明DXS是MEP途径的主要控制酶。 DXS操作还显示了从MEP途径代谢分离出的下游代谢产物第二个集合,即2-Cmethylerythritol-2,4-cyclodiphosphate(MEcDP)。 DXS过表达导致MEcDP池大小增加3到4倍,但最大标记减少2倍。在黑暗适应的转基因植物中检测到的残留MEcDP水平支持了该库的存在。事实证明,MEcDP的DXS浓度控制系数(0.74)是1-脱氧木糖5磷酸酯(0.35)或二甲基烯丙基二磷酸酯(0.34)的两倍,因此DXS的浓度控制系数高。尽管DXS的通量控制系数很高,但它的过表达导致类异戊二烯终产物和光合速率仅适度增加。通过MEcDP转移通量可能在一定程度上解释了这些发现,并提出了设计MEP途径的新机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号