...
首页> 外文期刊>Plant physiology >Systems Analysis of Guard Cell Membrane Transport for Enhanced Stomatal Dynamics and Water Use Efficiency~(1[W][OPEN])
【24h】

Systems Analysis of Guard Cell Membrane Transport for Enhanced Stomatal Dynamics and Water Use Efficiency~(1[W][OPEN])

机译:保卫细胞膜转运增强气孔动力学和水分利用效率〜(1 [W] [OPEN])的系统分析

获取原文
获取原文并翻译 | 示例
           

摘要

Stomatal transpiration is at the center of a crisis in water availability and crop production that is expected to unfold over the next 20 to 30 years. Global water usage has increased 6-fold in the past 100 years, twice as fast as the human population, and is expected to double again before 2030, driven mainly by irrigation and agriculture. Guard cell membrane transport is integral to controlling stomatal aperture and offers important targets for genetic manipulation to improve crop performance. However, its complexity presents a formidable barrier to exploring such possibilities. With few exceptions, mutations that increase water use efficiency commonly have been found to do so with substantial costs to the rate of carbon assimilation, reflecting the trade-off in CO_2 availability with suppressed stomatal transpiration. One approach yet to be explored in detail relies on quantitative systems analysis of the guard cell. Our deep knowledge of transport and homeostasis in these cells gives real substance to the prospect for reverse engineering of stomatal responses, using in silico design in directing genetic manipulation for improved water use and crop yields. Here we address this problem with a focus on stomatal kinetics, taking advantage of the OnGuard software and models of the stomatal guard cell recently developed for exploring stomatal physiology. Our analysis suggests that manipulations of single transporter populations are likely to have unforeseen consequences. Channel gating, especially of the dominant K~+ channels, appears the most favorable target for experimental manipulation.
机译:气孔蒸腾是水供应和农作物生产危机的核心,预计在未来20至30年内将逐步发展。在过去100年中,全球用水量增长了6倍,是人口增长速度的两倍,并且在2030年前,主要是在灌溉和农业驱动下,全球用水量有望再翻一番。保卫细胞膜运输是控制气孔孔径必不可少的,并为遗传改良提供了重要目标,以改善农作物的生长性能。但是,它的复杂性为探索这种可能性提供了巨大的障碍。几乎没有例外,通常发现增加水分利用效率的突变会增加碳同化率,这反映出CO 2的可利用性与气孔蒸腾受到抑制之间的折衷。尚未详细探讨的一种方法依赖于保护单元的定量系统分析。我们对这些细胞中的转运和体内平衡的深刻了解为气孔响应逆向工程的发展提供了真正的实质,利用计算机模拟设计指导遗传操作以改善水的利用和作物的产量。在这里,我们利用OnGuard软件和最近开发的用于探索气孔生理的气孔保卫细胞模型来重点解决气孔动力学问题。我们的分析表明,对单个运输者群体的操纵可能会产生无法预料的后果。通道门控,尤其是占主导地位的K〜+通道,似乎是实验操作的最有利目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号