...
首页> 外文期刊>Physics of plasmas >Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode
【24h】

Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

机译:磁绝缘离子二极管中的离子束增强,以非相对论模式产生高强度脉冲离子束

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation. (C) 2016 AIP Publishing LLC.
机译:离子电流密度超过Child-Langmuir极限的高强度脉冲离子束(HIPIB)是通过从离子二极管的阳极等离子体中提取离子束并抑制磁场绝缘下的电子流动来实现的。从理论上估计,随着磁场的增加,在非相对论模式下离子电流密度的最大值可能达到Child-Langmuir极限值的近3倍,在高相对论模式下接近6倍。在这项研究中,系统地研究了三种类型的带有被动阳极的磁绝缘离子二极管(MID)中通过磁绝缘增强离子束的行为,同时考虑了阳极表面上的阳极等离子体生成过程。在非相对论模式下,以200-300 kV的加速电压可以获得超过Child-Langmuir极限的大于6的最大增强因子。 MID的区别在于两种阳极等离子体形成机理,即阳极上电介质涂层的表面闪络和阳极上电子的爆炸性发射,以及外部磁场和自磁场的两种绝缘模式,其中两种绝缘模式都不存在。电子在阳极-阴极(AK)间隙中的闭合或闭合漂移。结合离子电流密度测量,能量密度表征可在聚焦以探索离子束产生过程之前解决能量密度的空间分布。关于控制离子中空电子流的三种类型的MID,获得了一致的结果,其中高离子束增强取决于AK间隙中的有效电子中和,而二极管下游的不同离子种类的HIPIB组成在传播过程中,离子束的中和作用可能会大大影响它。 (C)2016 AIP出版有限责任公司。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号