首页> 外文期刊>Physics of plasmas >Numerical study of turbulence-influence mechanism on arc characteristics in an air direct current circuit breaker
【24h】

Numerical study of turbulence-influence mechanism on arc characteristics in an air direct current circuit breaker

机译:空气直流断路器中湍流影响电弧特性的数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

This paper focuses on the numerical investigation of arc characteristics in an air direct current circuit breaker (air DCCB). Using magneto-hydrodynamics (MHD) theory, 3D laminar model and turbulence model are constructed and calculated. The standard k-epsilon model is utilized to consider the turbulence effect in the arc chamber of the DCCB. Several important phenomena are found: the arc column in the turbulence-model case is more extensive, moves much more slowly than the counterpart in the laminar-model case, and shows stagnation at the entrance of the chamber, unlike in the laminar-model case. Moreover, the arc voltage in the turbulence-model case is much lower than in the laminar-model case. However, the results in the turbulence-model case show a much better agreement with the results of the breaking experiments under DC condition than in the laminar-model case, which is contradictory to the previous conclusions from the arc researches of both the low-voltage circuit breaker and the sulfur hexafluoride (SF6) nozzle. First, in the previous air-arc research of the low-voltage circuit breaker, it is assumed that the air plasma inside the chamber is in the state of laminar, and the laminar-model application gives quite satisfactory results compared with the experiments, while in this paper, the laminar-model application works badly. Second, the turbulence-model application in the arc research of the SF6-nozzle performs much better and gives higher arc voltage than the laminar-model application does, whereas in this paper, the turbulence-model application predicts lower arc voltage than the laminar-model application does. Based on the analysis of simulation results in detail, the mechanism of the above phenomena is revealed. The transport coefficients are strongly changed by turbulence, which will enhance the arc diffusion and make the arc volume much larger. Consequently, the arc appearance and the distribution of Lorentz force in the turbulence-model case substantially differ from the arc appearance and the distribution of Lorentz force in the laminar-model case. Thus, the moving process of the arc in the turbulence-model case is slowed down and slower than in the laminar-model case. Moreover, the more extensive arc column in the turbulence-model case reduces the total arc resistance, which results in a lower arc voltage, more consistent with the experimental results than the arc voltage in the laminar-model case. Therefore, the air plasma inside this air DCCB is believed to be in the turbulence state, and the turbulence model is more suitable than the laminar model for the arc simulation of this kind of air DCCB. (c) 2016 AIP Publishing LLC.
机译:本文着重于空气直流断路器(空气DCCB)中电弧特性的数值研究。利用磁流体动力学(MHD)理论,构造并计算了3D层流模型和湍流模型。标准的k-ε模型用于考虑DCCB电弧室中的湍流效应。发现了几个重要现象:湍流模型情况下的弧形柱比层状模型情况下的弧柱更宽,移动速度慢得多,并且在室入口处出现滞流,这与层状模型情况不同。此外,湍流模型情况下的电弧电压远低于层流模型情况下的电弧电压。但是,湍流模型的结果与直流条件下的断裂实验结果相比,层流模型的结果具有更好的一致性,这与先前关于低压的电弧研究得出的结论相矛盾。断路器和六氟化硫(SF6)喷嘴。首先,在以前的低压断路器的电弧研究中,假设腔室内的空气等离子体处于层流状态,并且层流模型的应用与实验相比给出了令人满意的结果,而在本文中,层流模型应用程序运行不佳。其次,湍流模型在SF6-喷嘴电弧研究中的性能要好于层流模型,并提供更高的电弧电压,而在本文中,湍流模型应用预测的电弧电压要比层流模型更低。模型应用程序可以。在详细分析仿真结果的基础上,揭示了上述现象的机理。湍流极大地改变了输运系数,这将增强电弧的扩散并使电弧体积更大。因此,湍流模型情况下的弧形外观和洛伦兹力的分布与层流模型情况下的弧形外观和洛伦兹力的分布基本不同。因此,在湍流模型的情况下,电弧的运动过程比在层流模型的情况下慢且慢。此外,在湍流模型情况下,更宽的电弧柱会降低总电弧电阻,从而导致较低的电弧电压,与在层状模型情况下的电弧电压相比,与实验结果更加一致。因此,可以认为该空气DCCB内部的空气等离子体处于湍流状态,并且该湍流模型比层状模型更适合于这种空气DCCB的电弧模拟。 (c)2016 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号