首页> 外文期刊>Physics of plasmas >Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility
【24h】

Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility

机译:在国家点火装置的间接驱动实验中探究烧蚀瑞利泰勒不稳定性的深层非线性阶段

获取原文
获取原文并翻译 | 示例
       

摘要

Academic tests in physical regimes not encountered in Inertial Confinement Fusion will help to build a better understanding of hydrodynamic instabilities and constitute the scientifically grounded validation complementary to fully integrated experiments. Under the National Ignition Facility (NIF) Discovery Science program, recent indirect drive experiments have been carried out to study the ablative Rayleigh-Taylor Instability (RTI) in transition from weakly nonlinear to highly nonlinear regime [A. Casner et al., Phys. Plasmas 19, 082708 (2012)]. In these experiments, a modulated package is accelerated by a 175 eV radiative temperature plateau created by a room temperature gas-filled platform irradiated by 60 NIF laser beams. The unique capabilities of the NIF are harnessed to accelerate this planar sample over much larger distances (similar or equal to 1.4mm) and longer time periods (similar or equal to 12 ns) than previously achieved. This extended acceleration could eventually allow entering into a turbulent-like regime not precluded by the theory for the RTI at the ablation front. Simultaneous measurements of the foil trajectory and the subsequent RTI growth are performed and compared with radiative hydrodynamics simulations. We present RTI growth measurements for two-dimensional single-mode and broadband multimode modulations. The dependence of RTI growth on initial conditions and ablative stabilization is emphasized, and we demonstrate for the first time in indirect-drive a bubble-competition, bubble-merger regime for the RTI at ablation front. (c) 2015 AIP Publishing LLC.
机译:在惯性约束聚变中未遇到的物理状态下的学术测试将有助于加深对水动力不稳定性的理解,并构成与完全集成实验相辅相成的科学依据。根据国家点火设施(NIF)发现科学计划,最近进行了间接驱动实验,以研究从弱非线性状态到高度非线性状态的消融瑞利-泰勒不稳定性(RTI)[A. Casner等人,《物理学报》 Plasmas 19,082708(2012)]。在这些实验中,调制封装通过由60 NIF激光束照射的室温充气平台产生的175 eV辐射温度平稳地加速。利用NIF的独特功能,可以比以前实现的更大的距离(大约等于1.4mm)和更长的时间段(大约等于12 ns)加速此平面样本。这种扩展的加速度最终可能会导致进入消融前沿的RTI理论无法排除的湍流状状态。同时测量箔片轨迹和随后的RTI增长,并将其与辐射流体动力学模拟进行比较。我们介绍了二维单模和宽带多模调制的RTI增长测量。强调了RTI增长对初始条件和烧蚀稳定性的依赖性,我们首次在消融前沿间接证明了RTI的气泡竞争,气泡合并机制。 (c)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号