...
首页> 外文期刊>Physics of plasmas >On the Debye-Hückel effect of electric screening
【24h】

On the Debye-Hückel effect of electric screening

机译:关于电屏蔽的德拜-赫克尔效应

获取原文
获取原文并翻译 | 示例
           

摘要

The paper considers non-linear self-consistent electric potential equation (Sec. I), due to a cloud made of a single species of electric charges, satisfying a Boltzmann distribution law (Sec. II). Exact solutions are obtained in a simple logarithmic form, in three cases: (Sec. III) spherical radial symmetry; (Sec. IV) plane parallel symmetry; (Sec. V) a special case of azimuthal-cylindrical symmetry. All these solutions, and their transformations (Sec. VI), involve the Debye-Hückel radius; the latter was originally defined from a solution of the linearized self-consistent potential equation. Using an exact solution of the self-consistent potential equation, the distance at which the potential vanishes differs from the Debye-Hückel radius by a factor of ffiffiffi √2. The preceding (Secs. II-VI) simple logarithmic exact solutions of the self-consistent potential equations involve no arbitrary constants, and thus are special or singular integrals not the general integral. The general solution of the self-consistent potential equation is obtained in the plane parallel case (Sec. VII), and it involves two arbitrary constants that can be reduced to one via a translation (Sec. VIII). The plots of dimensionless potential (Figure 1), electric field (Figure 2), charge density (Figure 3), and total charge between ζ and infinity (Figure 4), versus distance normalized to Debye-Hückel radius ζ ≡ z/a, show that (Sec. IX) there is a continuum of solutions, ranging from a charge distribution concentrated inside the Debye-Hückel radius to one spread-out beyond it. The latter case leads to the limiting case of logarithmic potential, and stronger electric field; the former case, of very concentrated charge distribution, leads to a fratricide effect and weaker electric field.
机译:由于由单一种类的电荷构成的云满足玻尔兹曼分布定律(第二节),因此本文考虑了非线性自洽电势方程(第二节)。在三种情况下,以简单的对数形式获得精确的解:(第三节)球形径向对称; (第二节)平面平行对称; (第五节)方位圆柱对称的一种特殊情况。所有这些解决方案及其转换(第六节)都涉及Debye-Hückel半径。后者最初是从线性自洽电势方程的解中定义的。使用自洽电势方程的精确解,电势消失的距离与Debye-Hückel半径相差ffiffiffi√2。自洽势方程的前面的简单对数精确解(第II-VI节)不包含任何常数,因此是特殊或奇异积分,而不是一般积分。自洽势方程的一般解是在平面平行情况下获得的(第七节),它涉及两个任意常数,可以通过平移将其简化为一个常数(第八节)。无量纲电势(图1),电场(图2),电荷密度(图3)以及ζ和无穷大之间的总电荷(图4)相对于归一化为Debye-Hückel半径ζ≡z / a的距离的图,证明(第IX节)有一个连续的解,范围从集中在Debye-Hückel半径内的电荷分布到超出其范围的一个分布。后一种情况导致对数势的极限情况,并且电场更强;前一种情况下,电荷分布非常集中,导致了杀杀效应和较弱的电场。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号