首页> 外文期刊>Physical Review, B. Condensed Matter >Strain-induced magnetic anisotropy in single-crystal RFe2(110) thin films (R = Dy, Er, Tb, Dy0.7Tb0.3, Sm, Y)
【24h】

Strain-induced magnetic anisotropy in single-crystal RFe2(110) thin films (R = Dy, Er, Tb, Dy0.7Tb0.3, Sm, Y)

机译:单晶RFe2(110)薄膜中的应变感应磁各向异性(R = Dy,Er,Tb,Dy0.7Tb0.3,Sm,Y)

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

RFe2(110) single-crystal films have been grown by molecular-beam epitaxy (R = Y, Sm, Gd, Tb, Dy0.7Tb0.3, Dy, Er). The films are strained compared to bulk compounds and both sign and value of the strains are explained with a model of differential thermal contraction between the film and the substrate. Mossbauer spectrometry and macroscopic magnetization measurements demonstrate that the magnetic anisotropy is modified in magnetostrictive (110) films compared to corresponding bulk systems. In DyFe2(110) and ErFe2(110), the easy magnetization direction is the same as in bulk compounds at low temperature ((100) and (111), respectively). The magnetic moments rotate towards (110) directions when the temperature increases. At room temperature, they are close to the [110] in-plane direction in DyFe2(110) and close to the [110] perpendicular to the plane direction in ErFe2(110). In TbFe2(110), the magnetization easy direction is (111) whatever the temperature is. For compounds which present a thermal spin reorientation in bulk form (Dy0.7Tb0.3Fe2 and SmFe2), this rotation is limited in the thin films. As expected from a nonmagnetostrictive compound, the epitaxial strains do not induce a thermal evolution of the easy magnetization direction in YFe2 films: it remains independent of temperature, although slightly shifted from (111) due to a variation of the exchange anisotropy between iron ions induced by the strains. Theoretical diagrams of the magnetization direction have been calculated as a function of strain, between 4.2 K and room temperature. They show the influence of the strains (and more particularly their sign), and of the anisotropy and magnetoelastic constants on the easy magnetization direction. The model permits us to reproduce the experimental results. [References: 29]
机译:RFe2(110)单晶膜已通过分子束外延生长(R = Y,Sm,Gd,Tb,Dy0.7Tb0.3,Dy,Er)。与块状化合物相比,薄膜受到了应变,并且用薄膜和基材之间的热收缩差异模型解释了应变的符号和值。 Mossbauer光谱学和宏观磁化测量表明,与相应的本体系统相比,磁致伸缩(110)膜的磁各向异性得到了改善。在DyFe2(110)和ErFe2(110)中,易磁化方向与低温下的块状化合物相同(分别为(100)和(111))。温度升高时,磁矩朝(110)方向旋转。在室温下,它们在DyFe2(110)中接近[110]面内方向,而在ErFe2(110)中接近垂直于平面方向的[110]。在TbFe 2(110)中,无论温度如何,易磁化方向为(111)。对于以本体形式呈现热自旋重新取向的化合物(Dy0.7Tb0.3Fe2和SmFe2),这种旋转在薄膜中受到限制。正如非磁致伸缩化合物所预期的那样,外延应变不会在YFe2薄膜中引起易磁化方向的热演化:尽管由于(111)诱导的铁离子之间交换各向异性的变化而略微偏离(111),但它仍与温度无关。通过应变。磁化方向的理论图已根据应变计算得出,介于4.2 K和室温之间。它们显示了应变(尤其是其符号)以及各向异性和磁弹性常数对易磁化方向的影响。该模型允许我们重现实验结果。 [参考:29]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号