...
首页> 外文期刊>Physical Review, A. Atomic, molecular, and optical physics >Ramsey interferometry with atoms and molecules: Two-body versus many-body phenomena
【24h】

Ramsey interferometry with atoms and molecules: Two-body versus many-body phenomena

机译:原子和分子的拉姆齐干涉测量法:两体与多体现象

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We discuss the frequency and visibility of atom-molecule Ramsey fringes observed in recent experiments by Claussen [Phys. Rev. A 67, 060701 (2003)]. In these experiments a Rb-85 Bose-Einstein condensate was exposed to a sequence of magnetic field pulses on the high-field side of the 155 G Feshbach resonance. The observed oscillation frequencies largely agree with the theoretically predicted magnetic field dependence of the binding energy of the highest excited diatomic vibrational state, except for a small region very close to the singularity of the scattering length. Our analytic treatment of the experiment, as well as our dynamical simulations, follow the magnitude of the measured oscillation frequencies as well as the visibilities of the Ramsey fringes. We show that significant deviations from a purely binary dynamics, with an associated binding frequency, occur when the spatial extent of the molecular wave function becomes comparable with the mean distance between the atoms in the dilute gas. The experiments thus clearly identify the conditions under which diatomic molecules may be identified as a separate entity of the gas or, conversely, when the concept of binary physics in a many-body environment is bound to break down.
机译:我们讨论了克劳森[Phys。 Rev.A 67,060701(2003)]。在这些实验中,Rb-85玻色-爱因斯坦凝聚物暴露于155 G Feshbach共振高场侧的一系列磁场脉冲中。观察到的振荡频率与理论上预测的最高激发双原子振动态结合能的磁场依赖性基本一致,除了非常接近散射长度奇异性的小区域。我们对实验的分析处理以及动力学仿真遵循所测量的振荡频率的大小以及Ramsey条纹的可见性。我们表明,当分子波函数的空间范围变得与稀薄气体中原子之间的平均距离具有可比性时,就会发生与纯二元动力学显着偏离以及相关的结合频率。因此,实验清楚地确定了双原子分子可以被识别为气体的单独实体的条件,或者相反,当多体环境中的二元物理学概念必将被打破时,这些条件也可以被识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号