首页> 外文学位 >Quantum many-body phenomena in ultra-cold atoms in optical lattices.
【24h】

Quantum many-body phenomena in ultra-cold atoms in optical lattices.

机译:光学晶格中超冷原子中的量子多体现象。

获取原文
获取原文并翻译 | 示例

摘要

Two models are discussed here to illustrate the quantum many-body phenomena in mixtures of ultra-cold atoms in optical lattices. The first model describes a mixture of two species of bosonic atoms of equal masses in optical lattices and the second describes a mixture of heavy bosonic atoms and light fermionic atoms in optical lattices. For both models, we assume the trap is present and use parameters typical in experiment.;For the first model, the discussion is aimed at providing a thorough description of the collective behavior of the binary mixture in various interaction regions, with emphasis on two many-body phenomena, pairing and anti-pairing, as a result of the inter-species interaction. The pairing leads to a new type of superfluid order, called the paired superfluid (PSF) and the anti-pairing leads to another type of superfluid order, called the counter-flow superfluid (CFSF). In addition, we discuss the coexistence of charge density wave order with the three superfluid orders in the strong interaction region. We use both Luttinger liquid theory and the time evolving block decimation (TEBD) method to study this model in one dimension. The discussion is organized in three parts: the phase diagram and the correlation functions; the noise correlation functions; and the transport properties. Two phase diagrams are constructed to map the different orders in the parameter space. The correlation functions, include noise correlations, are carefully examined for the determination of the orders and for possible detection methods. In the end, the transport properties of the PSF and CFSF orders are studied through the dipole oscillation induced by trap displacement.;For the second model, examining a mixture of heavy bosons and light fermions, the discussion is oriented toward determining the thermal properties of the mixture for attractive inter-species interactions. This work is motivated by experiments creating artificial molecules through optical and magnetic control of ultra-cold atoms. We use the strong coupling (SC) expansion method to evaluate the density profile, the onsite inter-species correlations, the density fluctuations and the entropy per particle. Analytical expressions are derived for all the quantities above as well as the partition function. To benchmark the accuracy, the SC calculations are compared with inhomogeneous dynamical mean field theory (IDMFT) and Monte Carlo (MC) simulation. From the calculations, we find that 1) the efficiency of creating pre-formed molecules is significantly increased by confining the mixtures onto optical lattices; 2) the temperature of the mixtures in optical lattices can be reliably estimated through the density gradient and the density fluctuations.
机译:这里讨论两个模型来说明光学晶格中超冷原子混合物中的量子多体现象。第一个模型描述了光晶格中质量相等的两种硼原子的混合物,第二个模型描述了光晶格中重质硼原子和轻质铁离子的混合物。对于这两个模型,我们都假定存在陷阱并使用实验中的典型参数。对于第一个模型,讨论旨在提供对二元混合物在各种相互作用区域中的集体行为的全面描述,重点是两个种间相互作用的结果,即身体现象,配对和反配对。配对会导致一种新型的超流体阶,称为配对超流体(PSF),而反配对会导致另一种类型的超流体阶,称为逆流超流体(CFSF)。此外,我们讨论了在强相互作用区域中电荷密度波阶与三个超流体阶的共存。我们使用Luttinger液体理论和时间演化块抽取(TEBD)方法来一维研究此模型。讨论分为三个部分:相图和相关函数;以及噪声相关函数;和运输特性。构造了两个相图以映射参数空间中的不同顺序。仔细检查包括噪声相关在内的相关函数,以确定阶次和可能的检测方法。最后,通过陷阱陷阱引起的偶极子振荡研究了PSF和CFSF阶的输运性质。;对于第二个模型,研究了重玻色子和轻费米子的混合物,讨论的方向是确定这种混合物可以吸引各种物种间的相互作用。这项工作的动机是通过对超冷原子进行光学和磁控制来创建人造分子的实验。我们使用强耦合(SC)展开方法来评估密度分布,现场种间相关性,密度波动和每个粒子的熵。得出以上所有数量以及分配函数的解析表达式。为了确定精度的基准,将SC计算与非均匀动力平均场理论(IDMFT)和蒙特卡洛(MC)仿真进行了比较。通过计算,我们发现:1)通过将混合物限制在光学晶格上,显着提高了生成预形成分子的效率; 2)可以通过密度梯度和密度波动可靠地估算光学晶格中混合物的温度。

著录项

  • 作者

    Hu, Anzi.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Physics Low Temperature.;Physics Atomic.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号