首页> 外文期刊>Physical chemistry chemical physics: PCCP >Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking
【24h】

Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking

机译:评估MM / PBSA和MM / GBSA方法的性能。 6.预测蛋白质-蛋白质结合自由能和重新排列蛋白质-蛋白质对接产生的结合姿势的能力

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding protein-protein interactions (PPIs) is quite important to elucidate crucial biological processes and even design compounds that interfere with PPIs with pharmaceutical significance. Protein-protein docking can afford the atomic structural details of protein-protein complexes, but the accurate prediction of the three-dimensional structures for protein-protein systems is still notoriously difficult due in part to the lack of an ideal scoring function for protein-protein docking. Compared with most scoring functions used in protein-protein docking, the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) methodologies are more theoretically rigorous, but their overall performance for the predictions of binding affinities and binding poses for protein-protein systems has not been systematically evaluated. In this study, we first evaluated the performance of MM/PBSA and MM/GBSA to predict the binding affinities for 46 protein-protein complexes. On the whole, different force fields, solvation models, and interior dielectric constants have obvious impacts on the prediction accuracy of MM/GBSA and MM/PBSA. The MM/GBSA calculations based on the ff02 force field, the GB model developed by Onufriev et al. and a low interior dielectric constant (epsilon(in) = 1) yield the best correlation between the predicted binding affinities and the experimental data (r(p) = -0.647), which is better than MM/PBSA (r(p) = -0.523) and a number of empirical scoring functions used in protein-protein docking (r(p) = -0.141 to -0.529). Then, we examined the capability of MM/GBSA to identify the possible near-native binding structures from the decoys generated by ZDOCK for 43 protein-protein systems. The results illustrate that the MM/GBSA rescoring has better capability to distinguish the correct binding structures from the decoys than the ZDOCK scoring. Besides, the optimal interior dielectric constant of MM/GBSA for re-ranking docking poses may be determined by analyzing the characteristics of protein-protein binding interfaces. Considering the relatively high prediction accuracy and low computational cost, MM/GBSA may be a good choice for predicting the binding affinities and identifying correct binding structures for protein-protein systems.
机译:了解蛋白质-蛋白质相互作用(PPI)对于阐明关键的生物学过程,甚至设计出具有药物意义的干扰PPI的化合物都非常重要。蛋白质-蛋白质对接可以提供蛋白质-蛋白质复合物的原子结构细节,但是众所周知,蛋白质-蛋白质系统三维结构的准确预测仍然非常困难,部分原因是缺乏蛋白质-蛋白质的理想评分功能对接。与蛋白质对接中使用的大多数评分功能相比,分子力学/广义生表面积(MM / GBSA)和分子力学/泊松玻耳兹曼表面积(MM / PBSA)方法在理论上更为严格,但它们的整体性能尚未对蛋白质-蛋白质系统的结合亲和力和结合姿势的预测进行系统的评估。在这项研究中,我们首先评估了MM / PBSA和MM / GBSA的性能,以预测46种蛋白质-蛋白质复合物的结合亲和力。总体而言,不同的力场,溶剂化模型和内部介电常数对MM / GBSA和MM / PBSA的预测精度有明显的影响。基于ff02力场的MM / GBSA计算,由Onufriev等人开发的GB模型。较低的内部介电常数(epsilon(in)= 1)在预测的结合亲和力与实验数据之间具有最佳相关性(r(p)= -0.647),优于MM / PBSA(r(p)= -0.523)和用于蛋白质-蛋白质对接的许多经验评分函数(r(p)= -0.141至-0.529)。然后,我们检查了MM / GBSA从ZDOCK产生的诱饵针对43种蛋白质-蛋白质系统识别可能的近天然结合结构的能力。结果表明,与ZDOCK评分相比,MM / GBSA评分具有更好的从诱饵中区分出正确的结合结构的能力。此外,可以通过分析蛋白质-蛋白质结合界面的特征来确定用于重新排列对接姿势的MM / GBSA的最佳内部介电常数。考虑到相对较高的预测准确性和较低的计算成本,MM / GBSA可能是预测结合亲和力和识别蛋白质-蛋白质系统正确结合结构的好选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号