首页> 外文期刊>Physical chemistry chemical physics: PCCP >Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study
【24h】

Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study

机译:具有纳米空隙的HMX晶体中热点的形成和化学反应的引发:大规模反应分子动力学研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We report million-atom reactive molecular dynamic simulations of shock initiation of beta-cyclotetramethylene tetranitramine (beta-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.
机译:我们报告了包含纳米级球形空隙的β-环四亚甲基四硝胺(β-HMX)单晶的冲击引发的百万原子反应活性分子动力学模拟。观察到震动引起的空隙塌陷和随后的热点形成以及化学反应的引发,这取决于空隙的大小和冲击强度。对于1 km s(-1)的冲击速度和4 nm的空隙半径,空隙坍塌过程包括三个阶段;第二个阶段是3个阶段。主要机制是上游分子朝着中心线和空隙的下游表面会聚,形成流动分子。热点形成也经历三个阶段,其主要机理是由于流动分子在下游表面上的碰撞而将动能转化为热能。热点的高温引发局部化学反应,N-NO2键的断裂在初始反应机理中起关键作用。冲击强度和空隙尺寸对冲击动力学过程有显着影响,导致主要机理发生变化,导致空隙塌陷和形成热点。较大的空隙或较强的冲击会导致更严重的热点,从而导致更剧烈的化学反应,从而在较短的持续时间内促进更多的反应通道并生成更多的反应产物。反应产物主要集中在发达的热点上,这表明hmx晶体的化学反应性由于空洞塌陷而大大增强。这项研究得出的详细信息可以帮助您全面了解空隙塌陷在热点形成中的作用以及炸药的化学反应引发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号