首页> 外文期刊>Journal of Applied Physics >Shock-induced hotspot formation in amorphous and crystalline 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX): A molecular dynamics comparative study
【24h】

Shock-induced hotspot formation in amorphous and crystalline 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX): A molecular dynamics comparative study

机译:无定形和结晶1,3,5,7-四硝基-1,3,5,7-四唑(HMX)中的冲击诱导的热点形成:分子动力学比较研究

获取原文
获取原文并翻译 | 示例
           

摘要

Shock initiation of heterogeneous high-energy density materials is mediated by the formation of hotspots, and the collapse of porosity is considered the dominant mechanism behind energy localization. This is particularly important in emerging amorphous energetics yet little is known about how the intrinsic properties of glasses affect the size, shape, and temperature of hotspots in these materials. Therefore, we use large-scale molecular dynamics simulations to characterize hotspot formation in amorphous l,3,5,7-tetranitro-1,3,5,7-tetrazoctane originating from the collapse of cylindrical voids over a range of shock strengths. We find a transition from a viscoplastic to a hydrodynamic regime with increasing shock strength, similar to what is observed in the crystalline case. Interestingly for weak shocks, viscoplastic collapse in the amorphous system results in higher hotspot temperatures than in the crystal; this difference originates from the lower strength in the amorphous samples which results in faster collapse. On the other hand, in the hydrodynamic regime, where strength does not dominate the process of collapse, the hotspot temperature in the amorphous case is lower. The simulations reveal the molecular origin for these observations.
机译:异质高能量密度材料的冲击启动是通过热点的形成介导的,并且孔隙度的崩溃被认为是能量定位背后的主控机制。这在新出现的非晶能量方面尤为重要,但是关于玻璃的内在特性如何如何影响这些材料中热点的尺寸,形状和温度的知识。因此,我们使用大规模的分子动力学模拟来表征无定形L,3,5,7-四硝基-1,3,5,7-四唑膜的热点形成,源于一系列休克强度。我们发现从粘液塑料到流体动力学方案的过渡,随着休克强度的增加,类似于结晶情况下所观察到的内容。有趣的是,对于弱冲击,无定形系统中的粘液塌陷导致更高的热点温度而不是晶体;这种差异来自非晶样本中的较低强度,导致更快的崩溃。另一方面,在流体动力学制度中,在强度没有占据崩溃过程的情况下,无定形案例中的热点温度较低。模拟显示了这些观察结果的分子来源。

著录项

  • 来源
    《Journal of Applied Physics》 |2021年第5期|055902.1-055902.12|共12页
  • 作者单位

    School of Materials Engineering and Birck Nanotechnology Center Purdue University West Lafayette Indiana 47907 USA;

    School of Materials Engineering and Birck Nanotechnology Center Purdue University West Lafayette Indiana 47907 USA;

    School of Materials Engineering and Birck Nanotechnology Center Purdue University West Lafayette Indiana 47907 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号