首页> 外文期刊>Physical chemistry chemical physics: PCCP >Tight-binding quantum chemical molecular dynamics simulations for the elucidation of chemical reaction dynamics in SiC etching with SF6/O-2 plasma
【24h】

Tight-binding quantum chemical molecular dynamics simulations for the elucidation of chemical reaction dynamics in SiC etching with SF6/O-2 plasma

机译:紧密结合的量子化学分子动力学模拟,用于阐明SF6 / O-2等离子体SiC蚀刻中的化学反应动力学

获取原文
获取原文并翻译 | 示例
           

摘要

We used our etching simulator [H. Ito et al., J. Phys. Chem. C, 2014, 118, 21580-21588] based on tight-binding quantum chemical molecular dynamics (TB-QCMD) to elucidate SiC etching mechanisms. First, the SiC surface is irradiated with SF5 radicals, which are the dominant etchant species in experiments, with the irradiation energy of 300 eV. After SF5 radicals bombard the SiC surface, Si-C bonds dissociate, generating Si-F, C-F, Si-S, and C-S bonds. Then, etching products, such as SiS, CS, SiFx, and CFx (x = 1-4) molecules, are generated and evaporated. In particular, SiFx is the main generated species, and Si atoms are more likely to vaporize than C atoms. The remaining C atoms on SiC generate C-C bonds that may decrease the etching rate. Interestingly, far fewer Si-Si bonds than C-C bonds are generated. We also simulated SiC etching with SF3 radicals. Although the chemical reaction dynamics are similar to etching with SF5 radicals, the etching rate is lower. Next, to clarify the effect of O atom addition on the etching mechanism, we also simulated SiC etching with SF5 and O radicals/atoms. After bombardment with SF5 radicals, Si-C bonds dissociate in a similar way to the etching without O atoms. In addition, O atoms generate many C-O bonds and COy (y = 1-2) molecules, inhibiting the generation of C-C bonds. This indicates that O atom addition improves the removal of C atoms from SiC. However, for a high O concentration, many C-C and Si-Si bonds are generated. When the O atoms dissociate the Si-C bonds and generate dangling bonds, the O atoms terminate only one or two dangling bonds. Moreover, at high O concentrations there are fewer S and F atoms to terminate the dangling bonds than at low O concentration. Therefore, few dangling bonds of dissociated Si and C atoms are terminated, and they form many Si-Si and C-C bonds. Furthermore, we propose that the optimal O concentration is 50-60% because both Si and C atoms generate many etching products producing fewer C-C and Si-Si bonds are generated. Finally, we conclude that our TB-QCMD etching simulator is effective for designing the optimal conditions for etching processes in which chemical reactions play a significant role.
机译:我们使用了蚀刻模拟器[H.伊藤等人,物理学报。化学[C,2014,118,21580-21588],以紧密结合的量子化学分子动力学(TB-QCMD)为基础,阐明了SiC蚀刻机理。首先,用300 eV的辐射能对SiC表面进行SF5自由基辐照,该自由基是实验中的主要蚀刻剂。 SF5自由基轰击SiC表面后,Si-C键解离,生成Si-F,C-F,Si-S和C-S键。然后,产生并蒸发蚀刻产物,例如SiS,CS,SiFx和CFx(x = 1-4)分子。特别是,SiFx是主要生成的物质,并且Si原子比C原子更容易蒸发。 SiC上剩余的C原子产生C-C键,这可能会降低蚀刻速率。有趣的是,产生的Si-Si键远远少于C-C键。我们还模拟了使用SF3自由基的SiC蚀刻。尽管化学反应动力学类似于用SF5自由基进行蚀刻,但蚀刻速率较低。接下来,为了阐明添加O原子对蚀刻机理的影响,我们还模拟了使用SF5和O自由基/原子的SiC蚀刻。用SF5自由基轰击后,Si-C键解离的方式与没有O原子的蚀刻方式类似。另外,O原子产生许多C-O键和COy(y = 1-2)分子,从而抑制了C-C键的产生。这表明O原子的添加改善了从SiC中去除C原子的能力。但是,对于高O浓度,会生成许多C-C和Si-Si键。当O原子解离Si-C键并产生悬空键时,O原子仅终止一个或两个悬空键。此外,与低O浓度相比,在高O浓度下,终止悬空键的S和F原子更少。因此,解离的Si和C原子的悬空键很少被终止,并且它们形成许多Si-Si和C-C键。此外,我们建议最佳O浓度为50-60%,因为Si和C原子都会产生许多蚀刻产物,而产生的C-C和Si-Si键更少。最后,我们得出结论,我们的TB-QCMD蚀刻模拟器可有效地设计蚀刻工艺的最佳条件,其中化学反应起着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号