...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Thermal boundary conductance enhancement using experimentally achievable nanostructured interfaces - analytical study combined with molecular dynamics simulation
【24h】

Thermal boundary conductance enhancement using experimentally achievable nanostructured interfaces - analytical study combined with molecular dynamics simulation

机译:利用实验可实现的纳米结构界面增强热边界电导-分析研究与分子动力学模拟相结合

获取原文
获取原文并翻译 | 示例
           

摘要

Interfacial thermal resistance presents great challenges to the thermal management of modern electronics. In this work, we perform an analytical study to enhance the thermal boundary conductance (TBC) of nanostructured interfaces with square-shape pillar arrays, extendable to the characteristic lengths that can be fabricated in practice. As a representative system, we investigate a SiC substrate with the square-shape pillar array combined with epitaxial GaN as the nanostructured interface. By applying a first-order ray tracing method and molecular dynamics simulations to analyze phonon incidence and transmission at the nanostructured interface, we systematically study the impact of the characteristic dimensions of the pillar array on the TBC. Based on the multi-scale analysis we provide a general guideline to optimize the nanostructured interfaces to achieve higher TBC, demonstrating that the optimized TBC value of the nanostructured SiC/GaN interfaces can be 42% higher than that of the planar SiC/GaN interfaces without nanostructures. The model used and results obtained in this study will guide the further experimental realization of nanostructured interfaces for better thermal management in microelectronics.
机译:界面热阻对现代电子设备的热管理提出了巨大挑战。在这项工作中,我们进行了分析研究,以增强具有方形柱状阵列的纳米结构界面的热边界电导(TBC),该界面可扩展至可以在实践中制造的特征长度。作为一个代表性的系统,我们研究了具有方形柱状阵列和外延GaN作为纳米结构界面的SiC衬底。通过应用一阶射线追踪方法和分子动力学模拟分析声子在纳米结构界面的入射和透射,我们系统地研究了柱阵列特征尺寸对TBC的影响。基于多尺度分析,我们提供了优化纳米结构界面以实现更高的TBC的通用指南,表明纳米结构SiC / GaN界面的优化TBC值可以比平面SiC / GaN界面的优化TBC值高42%。纳米结构。本研究中使用的模型和获得的结果将指导纳米结构界面的进一步实验实现,以实现微电子学中更好的热管理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号