...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Transferability of a coarse-grained atactic polystyrene model: the non-bonded potential effect
【24h】

Transferability of a coarse-grained atactic polystyrene model: the non-bonded potential effect

机译:粗粒无规立构聚苯乙烯模型的可转移性:非键合势效应

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we construct an efficient and simple coarse grained (CG) model for atactic polystyrene (PS) by using a 1 : 1 mapping scheme at 463 K and 1 atm pressure and derive the corresponding bonded and non-bonded potentials in the CG force field (FF) via a direct Boltzmann inversion approach and a combined structure-based and thermodynamic quantities-based CG method, respectively. For computational considerations, the non-bonded interaction between CG particles is described by Lennard-Jones (LJ) type potentials, and both the radial distribution function (RDF) and the bulk density of the atomistic simulations are taken as target properties in the parameterization of the two LJ parameters. To shed light on the choice of LJ forms of CG non-bonded potentials when designing the CG models, a series of CG models with different LJ potentials are constructed and compared in order to understand how the quality of a CG model in reproducing the structure and thermodynamic properties of chemically realistic systems is affected by the choice of non-bonded potentials. We find that with our structural and thermodynamics combined CG method to construct the CG FF at a single thermodynamic state point without any temperature dependent LJ potential correction and/or pressure optimization, the resulting CG models possess good temperature transferability in a wide range of temperatures 300-600 K, where both the target properties and several other static properties (such as thermal expansion coefficient and meansquare radius of gyration) are generally reproduced. Furthermore, the non-bonded LJ potential influences the density response of CG models to the temperature change, i.e., CG models with harder LJ potentials show better temperature transferability than the softer ones. Meanwhile, the derived Tg increases with increasing LJ repulsion strength while thermal expansion coefficients in both melt and glass states are lowered as the LJ potential hardens. With regard to the local conformation and local packing distribution functions, varying non-bonded LJ potential hardness influences only the magnitude of the peak height but does not affect the peak position, in particular the magnitude of the non-bonded potential effect on local distribution functions becomes stronger at lower temperatures. More specifically, this effect on the local chain conformation statistics at the CG level is different for the distribution of bond-lengths, bond angles and dihedrals. As a result, the size of the CG chains is fairly insensitive to the non-bonded LJ potentials within 300-600 K. In short, the CG model with the harder LJ-type non-bonded CG potential is a more realistic representation of excluded volume interactions of the underlying atomistic PS monomer and thus has the potential to generate a higher Tg to match with the atomistic systems.
机译:在本文中,我们通过在463 K和1 atm压力下使用1:1映射方案,为无规聚苯乙烯(PS)构建了有效且简单的粗粒(CG)模型,并得出了CG中相应的键合和非键合电势力场(FF)分别通过直接的Boltzmann反演方法以及基于结构和基于热力学量的组合CG方法进行。出于计算方面的考虑,CG粒子之间的非键相互作用由Lennard-Jones(LJ)型势能描述,并且径向分布函数(RDF)和原子模拟的堆积密度均作为目标属性进行参数化。两个LJ参数。为了在设计CG模型时阐明LJ形式的CG非键合电势的选择,构建并比较了一系列具有不同LJ电位的CG模型,以了解CG模型在复制结构和质量时的质量。化学现实系统的热力学性质受非键合电位的选择影响。我们发现,利用我们的结构和热力学相结合的CG方法在单个热力学状态点构建CG FF,而无需任何依赖于温度的LJ电位校正和/或压力优化,所得CG模型在300的宽温度范围内具有良好的温度传递性-600 K,通常会同时复制目标特性和其他几个静态特性(例如热膨胀系数和回转的均方半径)。此外,非结合的LJ电势影响CG模型对温度变化的密度响应,即,具有较硬的LJ电势的CG模型显示出比较软的LJ电势更好的温度传递性。同时,导出的Tg随着LJ斥力强度的增加而增加,而随着LJ电势变硬,熔融态和玻璃态的热膨胀系数均降低。关于局部构象和局部堆积分布函数,变化的非键合LJ电势硬度仅影响峰高的大小,但不影响峰位置,特别是对局部分布函数的非键合电势影响的大小在较低温度下变得更强。更具体地说,对于键长,键角和二面体的分布,在CG级别对本地链构象统计量的影响是不同的。结果,CG链的大小对300-600 K范围内的非键合LJ电位相当不敏感。总之,具有更硬LJ型非键合CG电位的CG模型是排除的更现实表示。潜在的原子性PS单体之间存在大量的相互作用,因此有可能产生更高的Tg以与原子性系统匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号