首页> 外文期刊>Physical chemistry chemical physics: PCCP >Al atom on MoO3(010) surface: adsorption and penetration using density functional theory
【24h】

Al atom on MoO3(010) surface: adsorption and penetration using density functional theory

机译:MoO3(010)表面的Al原子:使用密度泛函理论的吸附和渗透

获取原文
获取原文并翻译 | 示例
           

摘要

Interfacial issues, such as the interfacial structure and the interdiffusion of atoms at the interface, are fundamental to the understanding of the ignition and reaction mechanisms of nanothermites. This study employs first-principle density functional theory to model Al/MoO3 by placing an Al adatom onto a unit cell of a MoO3(010) slab, and to probe the initiation of interfacial interactions of Al/MoO3 nanothermite by tracking the adsorption and subsurface-penetration of the Al adatom. The calculations show that the Al adatom can spontaneously go through the topmost atomic plane (TAP) of MoO3(010) and reach the 4-fold hollow adsorption-site located below the TAP, with this subsurface adsorption configuration being the most preferred one among all plausible adsorption configurations. Two other plausible configurations place the Al adatom at two bridge sites located above the TAP of MoO3(010) but the Al adatom can easily penetrate below this TAP to a relatively more stable adsorption configuration, with a small energy barrier of merely 0.2 eV. The evidence of subsurface penetration of Al implies that Al/MoO3 likely has an interface with intermixing of Al, Mo and O atoms. These results provide new insights on the interfacial interactions of Al/MoO3 and the ignition/combustion mechanisms of Al/MoO3 nanothermites.
机译:界面问题,例如界面的结构和原子在界面上的相互扩散,对于理解纳米半导体的点火和反应机理至关重要。这项研究采用第一原理密度泛函理论,通过将Al原子置于MoO3(010)平板的晶胞上,对Al / MoO3进行建模,并通过跟踪吸附和亚表面来探测Al / MoO3纳米铝热界面的相互作用。 -铝原子的渗透。计算表明,Al原子可以自发通过MoO3(010)的最高原子平面(TAP)并到达位于TAP下方的4倍空心吸附位点,其中次表面吸附构型是其中最优选的一种合理的吸附配置。另外两个可能的构型是将Al吸附原子置于MoO3(010)TAP上方的两个桥位处,但Al吸附原子可以很容易地渗透到该TAP下方,形成相对更稳定的吸附构型,而能量垒仅为0.2 eV。 Al地下渗透的证据表明Al / MoO3可能与Al,Mo和O原子的混合具有界面。这些结果提供了有关Al / MoO3的界面相互作用和Al / MoO3纳米体的着火/燃烧机理的新见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号