首页> 外文期刊>Physical chemistry chemical physics: PCCP >A quantum mechanical alternative to the Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids
【24h】

A quantum mechanical alternative to the Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids

机译:质子自旋晶格弛豫数据对固体中甲基的解释中,对Arrhenius方程的量子力学替代

获取原文
获取原文并翻译 | 示例
       

摘要

The theory of nuclear spin lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups have recently been given a consistent quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate (i.e., coherence-damping) processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin lattice relaxation data for the methyl groups in polycrystaine methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in the condensed phase can retain quantum character over much broader temperature range than is commonly thought.
机译:固体中甲基的核自旋晶格弛豫理论一直是核磁共振(NMR)光谱学中反复出现的问题。目前的观点是,除了特殊的量子效应受到威胁的低扭转势垒的极端情况外,甲基中核自旋的弛豫行为是由甲基在其三个方向之间的热活化经典跃迁所控制的。温度对松弛率的影响可以通过跳跃过程相关时间的阿伦尼乌斯行为来建模。质子化甲基中的各种弛豫效应最近都得到了一致的量子力学解释,无论温度范围如何,都不会调用跳跃模型。它利用了阻尼量子旋转(DQR)理论,该理论最初是用来描述受阻甲基的NMR线形效应的。在DQR模型中,甲基的非相干动力学包括两个量子速率(即相干阻尼)过程。对于质子弛豫,仅这些过程之一是相关的。在本文中,报道了在芳族位置具有氘代作用的聚冰晶甲基三苯硅烷和甲基三苯锗中甲基的温度相关质子自旋晶格弛豫数据,并根据DQR模型进行了解释。与利用现象学的阿伦尼乌斯方程的传统方法进行了比较。本观察结果提供了进一步的迹象,表明在稠合相中分子部分的非相干运动可以在比通常认为的宽得多的温度范围内保留量子特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号