首页> 外文期刊>Physical chemistry chemical physics: PCCP >Theoretical exploration of structures and electronic properties of double-electron oxidized guanine-cytosine base pairs with intriguing radical-radical interactions
【24h】

Theoretical exploration of structures and electronic properties of double-electron oxidized guanine-cytosine base pairs with intriguing radical-radical interactions

机译:具有自由基-自由基相互作用的双电子氧化鸟嘌呤-胞嘧啶碱基对的结构和电子性质的理论探索

获取原文
获取原文并翻译 | 示例
           

摘要

We present a computational study of the double-electron oxidized guanine-cytosine base pair as well as its deprotonated derivatives, focusing on their structural and electronic properties. Some novel electromagnetic characteristics are found. A hydrazine-like (N-N) cross-linked structure between the G and C radical moieties is the lowest-energy one for the [GC]~(2+) complexes. Double-electron oxidation can considerably destabilize the GC unit and leads to a barrier-hindered dissociation channel with negative dissociation energy. This channel is governed by a balance between electrostatic repulsion and attractive hydrogen-bonding interaction co-existing between G+ and C+. The proton/electron transfer reactions in the double-electron oxidized Watson-Crick base pair occur through a proton transfer induced charge migration mechanism. For the deprotonated [GC]~(2+) derivative, the [G(-H+)C]+ series prefers to accompany by transfer of an electron from the G to C moiety when the G~+ is deprotonated, and its highest-doubly occupied molecular orbital mainly localizes over the C moiety with a π-bonding character. For the diradical G+C(-H) series in which the C moiety is deprotonated, the two unpaired electrons reside one on each moiety in the n system. The diradical base pairs possess open-shell broken symmetry singlet states, and their magnetic coupling interactions are controlled by both intra-and inter-molecular interactions. The double-electron oxidized Watson-Crick base pair shows strong antiferromagnetic coupling, whereas the magnetic interactions of other diradical derivatives are relatively weak. This study highlights the crucial role of H-bonding in determining the magnetic interactions.
机译:我们目前对双电子氧化鸟嘌呤-胞嘧啶碱基对及其去质子化衍生物的计算研究,重点是其结构和电子性能。发现了一些新颖的电磁特性。 G和C自由基之间的肼样(N-N)交联结构是[GC]〜(2+)配合物的最低能量。双电子氧化会大大破坏GC单元的稳定性,并导致带有负离解能的势垒受阻的离解通道。该通道受静电排斥和G +和C +之间共存的有吸引力的氢键相互作用之间的平衡支配。双电子氧化的沃森-克里克碱基对中的质子/电子转移反应通过质子转移诱导的电荷迁移机制发生。对于去质子化的[GC]〜(2+)衍生物,[G(-H +)C] +系列更倾向于在G〜+被去质子化时将电子从G转移到C部分,其最高双占据的分子轨道主要位于具有π键特征的C部分上。对于其中C部分去质子化的双自由基G + C(-H)系列,两个不成对的电子在n系统的每个部分上驻留一个。双自由基基对具有开壳破裂的对称单线态,并且它们的磁耦合相互作用受分子内和分子间相互作用的控制。双电子氧化的沃森-克里克碱基对显示出强反铁磁耦合,而其他双自由基衍生物的磁相互作用相对较弱。这项研究强调了氢键在确定磁性相互作用中的关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号