...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Intermolecular interactions in electron transfer through stretched helical peptides
【24h】

Intermolecular interactions in electron transfer through stretched helical peptides

机译:通过拉伸的螺旋肽的电子转移中的分子间相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

The helical peptide Cys-Ala-Lys-(Glu-Ala-Ala-Ala-Lys)2-Ala-NH-(CH2)2-SH has been organized forming a self-assembled monolayer on gold (0.602 peptides per nm~2), its conductance behavior under stretching conditions being studied using scanning tunnelling microscopy and current sensing atomic force microscopy. The helical conformation of the peptide has been found to play a fundamental role in the conductance. Moreover, variation of the current upon molecular stretching indicates that peptides can be significantly elongated before the conductance drops to zero, the critical elongation being 1.22 ± 0.47 nm. Molecular dynamics simulations of a single peptide in the free state and of a variable number of peptides tethered to a gold surface {i.e. densities ranging from 0.026 to 1.295 peptides per nm2) have indicated that the helical conformation is intrinsically favored in solvated environments while in desolvated environments it is retained because of the fundamental role played by peptide-peptide intermolecular interactions. The structure obtained for the system with 24 tethered peptides, with a density of 0.634 peptides per nm2 closest to the experimental one, is in excellent agreement with experimental observations. On the other hand, simulations in which a single molecule is submitted to different compression and stretching processes while the rest remain in the equilibrium have been used to mimic the variation of the tip-substrate distance in experimental measures. Results allowed us to identify the existence, and in some cases coexistence, of intermolecular and intramolecular ionic ladders, suggesting that peptide-mediated electron transfer occurs through the hopping mechanism. Finally, quantum mechanical calculations have been used to investigate the variation of the electronic structure upon compression and stretching deformations.
机译:螺旋肽Cys-Ala-Lys-(Glu-Ala-Ala-Ala-Lys)2-Ala-NH-(CH2)2-SH已组织在金上形成自组装单层(0.602肽/ nm〜2 ),使用扫描隧道显微镜和电流感应原子力显微镜研究了其在拉伸条件下的电导行为。已经发现肽的螺旋构象在电导中起基本作用。此外,分子拉伸时电流的变化表明,在电导降至零之前,肽可以显着伸长,临界伸长为1.22±0.47 nm。处于游离状态的单个肽和拴在金表面的可变数目的肽的分子动力学模拟(即密度范围为0.026至1.295个肽/ nm2)表明,螺旋结构在溶剂化环境中本质上受到青睐,而在去溶剂化环境中,由于肽-肽分子间相互作用所起的基本作用,螺旋构象得以保留。对于具有24个束缚肽的系统所获得的结构,其密度为每nm2 0.634个肽,最接近实验肽,与实验观察结果非常吻合。另一方面,在单个模拟中,单个分子经历了不同的压缩和拉伸过程,而其余分子则保持平衡,这种模拟已用于模拟实验方法中尖端与基底之间的距离变化。结果使我们能够确定分子间和分子内离子梯的存在,并在某些情况下共存,这表明肽介导的电子转移是通过跳跃机制发生的。最后,量子力学计算已用于研究电子结构在压缩和拉伸变形后的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号