...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >The reactivity of endohedral fullerenes. What can be learnt from computational studies?
【24h】

The reactivity of endohedral fullerenes. What can be learnt from computational studies?

机译:内面富勒烯的反应性。从计算研究中可以学到什么?

获取原文
获取原文并翻译 | 示例
           

摘要

The last two decades have witnessed major advances in the synthesis and characterization of endohedral fullerenes. These species have interesting physicochemical properties with many potential interesting applications in the fields of magnetism, superconductivity, nonlinear optical properties, radioirnmunotherapy, and magnetic resonance imaging contrast agents, among others. In addition to the synthesis and characterization, the chemical functionalization of these species has been a main focus of research for at least four reasons: first, to help characterize endohedral fullerenes that could not be well described structurally otherwise; second, to generate materials with fine-tuned properties leading to enhanced functionality in one of their multiple potential applications; third, to produce water-soluble endohedral fullerenes needed for their use in medicinal sciences; and fourth, to generate electron donor-acceptor conjugates that can be used in solar energy conversion/storage. The functionalization of these species has been achieved through different types of reactions, the most common being the Diels-Alder reactions, 1,3-dipolar cycloadditions, Bingel-Hirsch reactions, and free-radical reactions. It lias been found that the performance of these reactions in endohedral fullerenes may be quite different from that of the empty fullerenes. Indeed, encapsulated species have a large influence on the thermodynamics, kinetics, and regiochemistry of these reactions. A detailed understanding of the changes in chemical reactivity due to incarceration of atoms or clusters of atoms is essential to assist the synthesis of new functionalized endohedral fullerenes with specific properties. This Perspective seeks to highlight the key role played by computational chemistry in the analysis of the chemical reactivity of these systems. It is shown that the information obtained through calculations is highly valuable in the process of designing new materials based on endohedral fullerenes.
机译:在过去的二十年中,内面富勒烯的合成和表征取得了重大进展。这些物质具有令人感兴趣的理化性质,在磁性,超导电性,非线性光学性质,放射免疫疗法和磁共振成像造影剂等领域具有许多潜在的令人感兴趣的应用。除了合成和表征外,这些物质的化学功能化一直是研究的主要重点,原因至少有四个:第一,帮助表征内衬的富勒烯,否则在结构上无法很好地描述。第二,生成具有微调特性的材料,从而在其多种潜在应用之一中增强功能;第三,生产用于医学的水溶性富勒烯。第四,产生可用于太阳能转换/存储的电子供体-受体共轭物。这些物质的功能化已通过不同类型的反应实现,最常见的是Diels-Alder反应,1,3-偶极环加成反应,Bingel-Hirsch反应和自由基反应。已经发现,这些反应在内面富勒烯中的表现可能与空的富勒烯中的表现完全不同。实际上,封装的物质对这些反应的热力学,动力学和区域化学有很大的影响。对原子或原子团簇的嵌顿引起的化学反应性变化的详细理解,对于协助合成具有特定性质的新型功能化内面富勒烯至关重要。本观点旨在强调计算化学在分析这些系统的化学反应性中所起的关键作用。结果表明,通过计算获得的信息在基于内嵌富勒烯的新材料设计过程中具有很高的价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号