...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Impact of Surface Chemistry on Nanoparticle-Electrode Interactions in the Electrochemical Detection of Nanoparticle Collisions
【24h】

Impact of Surface Chemistry on Nanoparticle-Electrode Interactions in the Electrochemical Detection of Nanoparticle Collisions

机译:表面化学对纳米粒子碰撞的电化学检测中纳米粒子-电极相互作用的影响

获取原文
获取原文并翻译 | 示例

摘要

The electrochemical detection of a single nanoparticle (NP) at a support electrode can provide key information on surface chemistry and fundamental electron transfer (ET) properties at the nanoscale. This study employs scanning electrochemical cell microscopy (SECCM) as a fluidic device to both deliver individual citrate-capped gold nanopartides (AuNPs) and study the interactions between them and a range of alkanethiol-modified Au electrodes with different terminal groups, namely, -COOH, -OH, and -CH3. Single NP collisions were detected through the AuNP-mediated ET reaction of Fe(CN)(6)(4-/3-) in aqueous solution. The collision frequency, residence time, and current-time characteristics of AuNPs are greatly affected by the terminal groups of the alkanethiol. Methods to determine these parameters, including the effect of the instrument response function, and derive ET kinetics are outlined. To further understand the interactions of AuNPs with these surfaces, atomic force microscopy (AFM) force measurements were performed using citrate-modified Au-coated AFM tips and the same alkanethiol-modified Au substrates in aqueous solution at the same potential bias as for the AuNP collision experiments. Force curves on OH-terminated surfaces showed no repulsion and negligible adhesion force. In contrast, a clear repulsion (on approach) was seen for COOH-terminated surface and adhesion forces (on retract) were observed for both COOH- and CH3-terminated surfaces. These interactions help to explain the residence times and collision frequencies in AuNP collisions. More generally, as the interfacial properties probed by AFM appear to be amplified in NP collision experiments, and new features also become evident, it is suggested that such experiments provide a new means of probing surface chemistry at the nanoscale.
机译:在支撑电极上对单个纳米粒子(NP)的电化学检测可以提供有关纳米级表面化学和基本电子传递(ET)特性的关键信息。这项研究采用扫描电化学电池显微镜(SECCM)作为流体装置,既可以提供单个柠檬酸盐封端的金纳米粒子(AuNPs),还可以研究它们与一系列具有不同端基的烷硫醇修饰的Au电极(即-COOH)之间的相互作用,-OH和-CH3。通过水溶液中Fe(CN)(6)(4- / 3-)的AuNP介导的ET反应检测到单个NP碰撞。 AuNPs的碰撞频率,停留时间和当前时间特性受烷硫醇末端基团的影响很大。概述了确定这些参数的方法,包括仪器响应函数的影响并得出ET动力学。为了进一步了解AuNP与这些表面的相互作用,使用了柠檬酸盐修饰的Au包被的AFM尖端和水溶液中相同的烷硫醇修饰的Au底物,在与AuNP相同的电位偏置下进行了原子力显微镜(AFM)力测量。碰撞实验。在OH封端的表面上的力曲线显示没有排斥力,并且粘附力可忽略不计。相反,对于以COOH为末端的表面观察到了明显的排斥力(接近时),而对于以COOH和CH3为末端的表面都观察到了粘附力(收缩时)。这些相互作用有助于解释AuNP碰撞中的停留时间和碰撞频率。更一般而言,由于AFM探测的界面性质似乎在NP碰撞实验中得到了放大,并且新的特征也变得显而易见,这表明此类实验提供了一种探测纳米级表面化学的新手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号