...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Role of parallel reformable bonds in the self-healing of cross-linked nanogel particles
【24h】

Role of parallel reformable bonds in the self-healing of cross-linked nanogel particles

机译:平行可重整键在交联纳米凝胶颗粒自愈中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

We develop a hybrid computational approach to examine the mechanical properties and self-healing behavior of nanogel particles that are cross-linked by both stable and labile bonds. The individual nanogels are modeled via the lattice spring model (LSM), which is an effective method for probing the response of materials to mechanical deformation. The cross-links between the nanogels are simulated via the hierarchical Bell model (HBM), which allows us to capture the rupturing of multiple parallel bonds as the result of an applied force. Because the labile bonds are relatively reactive, they can reform after they have been ruptured. To incorporate the possibility of bonds reforming, we modify the HBM formalism and validate the modified HBM by considering a system of two surfaces, which are connected by multiple parallel bonds. We then use our hybrid HBM/LSM to simulate the behavior of the cross-linked nanogels under a tensile deformation. In these simulations, each labile linkage between the nanogels contains at most N parallel bonds. We vary the fraction of labile linkages and the value of N in these linkages to determine the optimal conditions for improving the robustness of the material. Although numerous parallel bonds within a linkage enhance the strength of the material, these bonds diminish the ductility and the ability of the material to undergo the structural rearrangements that are necessary for self-repair. For a relatively low fraction of labile bonds and N ≥ 4, however, we can significantly improve the strength of the material and preserve the self-healing properties. For instance, a sample with 30% labile linkages and N = 4 per linkage is roughly 200% stronger than a sample that is cross-linked solely by stable bonds and can still undergo self-repair in response to the tensile deformation. The results reveal how mechanical stress can lead not only to the appearance of cavities within the material but also to bond formation that "heals" these cavities and thus prevents the catastrophic failure of the material.
机译:我们开发了一种混合计算方法来检查通过稳定键和不稳定键交联的纳米凝胶颗粒的机械性能和自愈性能。通过晶格弹簧模型(LSM)对单个纳米凝胶进行建模,这是探测材料对机械变形响应的有效方法。纳米凝胶之间的交联是通过分层贝尔模型(HBM)进行模拟的,这使我们能够捕获由于施加力而导致的多个平行键的断裂。由于不稳定的键是相对反应性的,因此它们可以在断裂后重新形成。为了结合键重整的可能性,我们修改了HBM形式,并通过考虑两个表面的系统来验证修改后的HBM,两个表面通过多个平行键连接。然后,我们使用混合HBM / LSM来模拟拉伸变形下交联纳米凝胶的行为。在这些模拟中,纳米凝胶之间的每个不稳定键最多包含N个平行键。我们改变不稳定键的比例和这些键中N的值,以确定提高材料强度的最佳条件。尽管链接中的许多平行键增强了材料的强度,但这些键降低了材料的延展性和材料进行自修复所必需的结构重排的能力。但是,对于相对较低比例的不稳定键和N≥4,我们可以显着提高材料的强度并保留自愈性能。例如,具有30%不稳定键且每个键N = 4的样品比仅通过稳定键交联且仍能响应拉伸变形进行自我修复的样品强约200%。结果表明,机械应力不仅会导致材料内出现空腔,而且会导致形成粘合剂,从而“修复”这些空腔,从而防止材料遭受灾难性破坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号