首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Thermodynamic analysis on wetting behavior of hierarchical structured superhydrophobic surfaces
【24h】

Thermodynamic analysis on wetting behavior of hierarchical structured superhydrophobic surfaces

机译:分层结构化超疏水表面润湿行为的热力学分析

获取原文
获取原文并翻译 | 示例
           

摘要

Superhydrophobicity of biological surfaces has recently been studied intensively with the aim to design artificial surfaces. It has been revealed that nearly all of the superhydrophobic surfaces consist of the intrinsic hierarchical structures. However, the role of such structures has not been completely understood. In this study, different scales of hierarchical structures have been thermodynamically analyzed using a 2-D model. In particular, the free energy (FE) and free energy barrier (FEB) for the composite wetting states are calculated, and the effects of relative pillar height (hr) and relative pillar width (ar) on contact angle (CA) and contact angle hysteresis (CAH) have been investigated in detail. The results show that if the geometrical parameter ratio is the same (e.g., a:b:h = 2:2:1), the equilibrium CA for the composite of the three-, dual-, and single-scale roughness structures is 159.8°, 151.1°, and 138.6°, respectively. Furthermore, the nano-to microstructures of such surfaces can split a large FEB into many small ones and hence can decrease FEB; in particular, a hierarchical geometrical structure can lead to a hierarchical "FEB structure" (e.g., for a dual-scale roughness geometrical structure, there is also a dual-scale FEB structure). This is especially important for a droplet to overcome the large FEBs to reach a stable superhydrophobic state, which can lead to an improved self-cleaning property. Moreover, for extremely small droplets, the secondary or third structure (i.e., submicrostructure or nanostructure) can play a dominant role in resisting the droplets into troughs, so that a composite state can be always thermodynamically favorable for such a hierarchical structured system.
机译:为了设计人造表面,最近对生物表面的超疏水性进行了深入研究。已经发现,几乎所有的超疏水表面都由固有​​的层次结构组成。但是,这种结构的作用还没有被完全理解。在这项研究中,已使用2-D模型热力学分析了不同尺度的分层结构。特别是,计算了复合材料润湿状态下的自由能(FE)和自由能垒(FEB),并且相对柱高(hr)和相对柱宽(ar)对接触角(CA)和接触角的影响磁滞现象(CAH)已被详细研究。结果表明,如果几何参数比率相同(例如a:b:h = 2:2:1),则三,双和单尺度粗糙度结构的复合材料的平衡CA为159.8。 °,151.1°和138.6°。此外,这种表面的纳米到微观结构可以将大的FEB分成许多小的,因此可以减少FEB。特别地,分层的几何结构可以导致分层的“ FEB结构”(例如,对于双尺度粗糙度几何结构,还存在双尺度FEB结构)。对于液滴克服大的FEB达到稳定的超疏水状态(这可能导致改善的自清洁性)而言,这尤其重要。而且,对于极小的液滴,二级或第三结构(即亚微结构或纳米结构)可在抵抗液滴进入槽中起主要作用,因此对于这种分级结构化系统,复合状态始终在热力学上是有利的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号