首页> 外文期刊>Nucleic Acids Research >Next-generation bis-locked nucleic acids with stacking linker and 2 '-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes
【24h】

Next-generation bis-locked nucleic acids with stacking linker and 2 '-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes

机译:具有堆叠接头和2'-甘氨酰氨基LNA的下一代双锁核酸显示DNA入侵超螺旋双链体的能力增强

获取原文
获取原文并翻译 | 示例
           

摘要

Targeting and invading double-stranded DNA with synthetic oligonucleotides under physiological conditions remain a challenge. Bis-locked nucleic acids (bisLNAs) are clamp-forming oligonucleotides able to invade into supercoiled DNA via combined Hoogsteen and Watson-Crick binding. To improve the bisLNA design, we investigated its mechanism of binding. Our results suggest that bisLNAs bind via Hoogsteen-arm first, followed by Watson-Crick arm invasion, initiated at the tail. Based on this proposed hybridization mechanism, we designed next-generation bisLNAs with a novel linker able to stack to adjacent nucleobases, a new strategy previously not applied for any type of clamp-constructs. Although the Hoogsteen-arm limits the invasion, upon incorporation of the stacking linker, bisLNA invasion is significantly more efficient than for non-clamp, or nucleotide-linker containing LNA-constructs. Further improvements were obtained by substituting LNA with 2'-glycylamino-LNA, contributing a positive charge. For regular bisLNAs a 14-nt tail significantly enhances invasion. However, when two stacking linkers were incorporated, tail-less bisLNAs were able to efficiently invade. Finally, successful targeting of plasmids inside bacteria clearly demonstrates that strand invasion can take place in a biologically relevant context.
机译:在生理条件下用合成的寡核苷酸靶向和侵袭双链DNA仍然是一个挑战。双锁核酸(bisLNAs)是能够通过Hoogsteen和Watson-Crick结合结合进入超螺旋DNA的钳形寡核苷酸。为了改进bisLNA设计,我们研究了其结合机制。我们的结果表明,bisLNAs首先通过Hoogsteen臂结合,然后在尾部开始通过Watson-Crick臂入侵。基于此提出的杂交机制,我们设计了具有新型连接子的下一代bisLNA,该连接子能够堆叠至相邻的核碱基,而该新策略以前并未应用于任何类型的钳夹结构。尽管Hoogsteen臂限制了入侵,但在加入堆叠连接子后,bisLNA入侵的效率明显高于非钳位或含有LNA的核苷酸连接子。通过用2'-甘氨酰氨基-LNA取代LNA,获得正电荷,可以得到进一步的改进。对于常规的bisLNA,14 nt尾巴显着增强了侵袭能力。但是,当合并了两个堆叠接头时,无尾的bisLNAs能够有效入侵。最后,细菌内质粒的成功靶向清楚地证明了链入侵可以发生在生物学相关的环境中。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号