首页> 外文期刊>Nucleic Acids Research >DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions
【24h】

DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions

机译:DNA-PK触发组蛋白泛素化和信号转导,响应转录阻滞拓扑异构酶I损伤修复过程中产生的DNA双链断裂

获取原文
获取原文并翻译 | 示例
           

摘要

Although defective repair of DNA double-strand breaks (DSBs) leads to neurodegenerative diseases, the processes underlying their production and signaling in non-replicating cells are largely unknown. Stabilized topoisomerase I cleavage complexes (Top1cc) by natural compounds or common DNA alterations are transcription-blocking lesions whose repair depends primarily on Top1 proteolysis and excision by tyrosyl-DNA phosphodiesterase-1 (TDP1). We previously reported that stabilized Top1cc produce transcription-dependent DSBs that activate ATM in neurons. Here, we use camptothecin (CPT)-treated serum-starved quiescent cells to induce transcription-blocking Top1cc and show that those DSBs are generated during Top1cc repair from Top1 peptide-linked DNA single-strand breaks generated after Top1 proteolysis and before excision by TDP1. Following DSB induction, ATM activates DNA-PK whose inhibition suppresses H2AX and H2A ubiquitination and the later assembly of activated ATM into nuclear foci. Inhibition of DNA-PK also reduces Top1 ubiquitination and proteolysis as well as resumption of RNA synthesis suggesting that DSB signaling further enhances Top1cc repair. Finally, we show that co-transcriptional DSBs kill quiescent cells. Together, these new findings reveal that DSB production and signaling by transcription-blocking Top1 lesions impact on non-replicating cell fate and provide insights on the molecular pathogenesis of neurodegenerative diseases such as SCAN1 and AT syndromes, which are caused by TDP1 and ATM deficiency, respectively.
机译:尽管DNA双链断裂(DSBs)的缺陷修复会导致神经退行性疾病,但在非复制性细胞中其产生和信号转导的基础过程仍是未知的。天然化合物或常见DNA改变引起的稳定的拓扑异构酶I裂解复合物(Top1cc)是转录阻断性病变,其修复主要取决于Top1蛋白水解和酪氨酸DNA磷酸二酯酶-1(TDP1)的切除。我们以前曾报道过稳定的Top1cc会产生转录依赖性DSB,从而激活神经元中的ATM。在这里,我们使用喜树碱(CPT)处理的血清饥饿的静止细胞来诱导转录阻滞的Top1cc,并显示那些DSB是在Top1蛋白酶水解后和被TDP1切除之前由Top1肽连接的DNA单链断裂产生的。 。在DSB诱导后,ATM激活DNA-PK,其抑制作用抑制H2AX和H2A泛素化,并随后将激活的ATM组装成核灶。抑制DNA-PK还可以降低Top1泛素化和蛋白水解以及RNA合成的恢复,这表明DSB信号传导进一步增强了Top1cc修复。最后,我们表明共转录DSB杀死静态细胞。这些新发现共同表明,DSB的产生和通过转录阻滞的Top1损伤引起的信号传导会影响非复制性细胞命运,并为由TDP1和ATM缺乏引起的神经退行性疾病(如SCAN1和AT综合征)的分子发病机理提供深刻见解,分别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号