首页> 外文期刊>Nucleic Acids Research >Direct observation of the translocation mechanism of transcription termination factor Rho
【24h】

Direct observation of the translocation mechanism of transcription termination factor Rho

机译:直接观察转录终止因子Rho的易位机制

获取原文
获取原文并翻译 | 示例
           

摘要

Rho is a ring-shaped, ATP-fueled motor essential for remodeling transcriptional complexes and R-loops in bacteria. Despite years of research on this fundamental model helicase, key aspects of its mechanism of translocation remain largely unknown. Here, we used single-molecule manipulation and fluorescence methods to directly monitor the dynamics of RNA translocation by Rho. We show that the efficiency of Rho activation is strongly dependent on the force applied on the RNA but that, once active, Rho is able to translocate against a large opposing force (at least 7 pN) by a mechanism involving 'tethered tracking'. Importantly, the ability to directly measure dynamics at the single-molecule level allowed us to determine essential motor properties of Rho. Hence, Rho translocates at a rate of similar to 56 nt per second under our experimental conditions, which is 2-5 times faster than velocities measured for RNA polymerase under similar conditions. Moreover, the processivity of Rho (similar to 62 nt at a 7 pN opposing force) is large enough for Rho to reach termination sites without dissociating from its RNA loading site, potentially increasing the efficiency of transcription termination. Our findings unambiguously establish 'tethered tracking' as the main pathway for Rho translocation, support 'kinetic coupling' between Rho and RNA polymerase during Rho-dependent termination, and suggest that forces applied on the nascent RNA transcript by cellular substructures could have important implications for the regulation of transcription and its coupling to translation in vivo.
机译:Rho是一种环形的,由ATP燃料驱动的马达,对于重塑细菌中的转录复合物和R环至关重要。尽管对这种基本模型解旋酶进行了多年的研究,但其易位机制的关键方面仍然未知。在这里,我们使用单分子操作和荧光方法直接监测Rho转运RNA的动力学。我们表明,Rho激活的效率很大程度上取决于施加在RNA上的力,但是一旦激活,Rho就能够通过涉及“束缚追踪”的机制克服较大的反作用力(至少7 pN)进行转运。重要的是,直接测量单分子动力学的能力使我们能够确定Rho的基本运动特性。因此,在我们的实验条件下,Rho的转运速度接近每秒56 nt,比在类似条件下RNA聚合酶测得的速度快2-5倍。此外,Rho的合成能力(类似于在7 pN反向力下的62 nt)足够大,足以使Rho到达终止位点而不脱离其RNA加载位点,从而可能提高转录终止的效率。我们的发现明确地确立了“束缚追踪”作为Rho易位的主要途径,在Rho依赖性终止过程中支持Rho和RNA聚合酶之间的“动力学偶联”,并暗示通过细胞亚结构施加于新生RNA转录本上的力可能对转录的调节及其与体内翻译的耦合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号