...
首页> 外文期刊>Nucleic Acids Research >Quantitative assessment of Tet-induced oxidation products of 5-methylcytosine in cellular and tissue DNA
【24h】

Quantitative assessment of Tet-induced oxidation products of 5-methylcytosine in cellular and tissue DNA

机译:Tet诱导的细胞和组织DNA中5-甲基胞嘧啶氧化产物的定量评估

获取原文
获取原文并翻译 | 示例
           

摘要

Recent studies showed that Ten-eleven translocation (Tet) family dioxygenases can oxidize 5-methyl-2'-deoxycytidine (5-mdC) in DNA to yield the 5-hydroxymethyl, 5-formyl and 5-carboxyl derivatives of 2'-deoxycytidine (5-HmdC, 5-FodC and 5-CadC). 5-HmdC in DNA may be enzymatically deaminated to yield 5-hydroxymethyl-2'-deoxyuridine (5-HmdU). After their formation at CpG dinucleotide sites, these oxidized pyrimidine nucleosides, particularly 5-FodC, 5-CadC, and 5-HmdU, may be cleaved from DNA by thymine DNA glycosylase, and subsequent action of base-excision repair machinery restores unmethylated cytosine. These processes are proposed to be important in active DNA cytosine demethylation in mammals. Here we used a reversed-phase HPLC coupled with tandem mass spectrometry (LC-MS/MS/MS) method, along with the use of stable isotope-labeled standards, for accurate measurements of 5-HmdC, 5-FodC, 5-CadC and 5-HmdU in genomic DNA of cultured human cells and multiple mammalian tissues. We found that overexpression of the catalytic domain of human Tet1 led to marked increases in the levels of 5-HmdC, 5-FodC and 5-CadC, but only a modest increase in 5-HmdU, in genomic DNA of HEK293T cells. Moreover, 5-HmdC is present at a level that is approximately 2-3 and 3-4 orders of magnitudegreater than 5-FodC and 5-CadC, respectively, and 35-400 times greater than 5-HmdU in the mouse brain and skin, and human brain. The robust analytical method built a solid foundation for dissecting the molecular mechanisms of active cytosine demethylation, for measuring these 5-mdC derivatives and assessing their involvement in epigenetic regulation in other organisms and for examining whether these 5-mdC derivatives can be used as biomarkers for human diseases.
机译:最近的研究表明十一个易位(Tet)家族双加氧酶可以氧化DNA中的5-甲基-2'-脱氧胞苷(5-mdC)以产生2'-脱氧胞苷的5-羟甲基,5-甲酰基和5-羧基衍生物(5-HmdC,5-FodC和5-CadC)。可以对DNA中的5-HmdC进行酶脱氨处理,以生成5-羟甲基-2'-脱氧尿苷(5-HmdU)。这些氧化的嘧啶核苷,尤其是5-FodC,5-CadC和5-HmdU,在CpG二核苷酸位点形成后,可被胸腺嘧啶DNA糖基化酶从DNA上切割下来,随后碱基切除修复机制的作用可还原未甲基化的胞嘧啶。提出这些过程在哺乳动物的活性DNA胞嘧啶脱甲基中很重要。在这里,我们使用了反相HPLC和串联质谱(LC-MS / MS / MS)的方法,并使用稳定的同位素标记的标准品,以精确测量5-HmdC,5-FodC,5-CadC和人类培养的多种哺乳动物组织的基因组DNA中的5-HmdU。我们发现人类Tet1的催化域的过度表达导致HEK293T细胞的基因组DNA中5-HmdC,5-FodC和5-CadC的水平显着增加,但5-HmdU仅有适度的增加。此外,5-HmdC的存在水平分别比5-FodC和5-CadC大2-3和3-4个数量级,并且在小鼠的大脑和皮肤中比5-HmdU大35-400倍和人类的大脑。强大的分析方法为剖析活性胞嘧啶脱甲基化的分子机制,测量这些5-mdC衍生物并评估其在其他生物体中的表观遗传调控以及检查这些5-mdC衍生物是否可用作生物标记物奠定了坚实的基础。人类疾病。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号